1 华侨大学材料科学与工程学院 发光材料与信息显示研究院,福建 厦门 361021
2 中国工程物理研究院 化工材料研究所,四川 成都 610200
金属卤化物钙钛矿发光二极管(Perovskite light?emitting diodes,Pero?LEDs)器件结构中,空穴传输层(HTL)是影响Pero?LEDs效率的关键性因素之一。由于醋酸钴(Co(OAc)2)薄膜具有优异的光电特性,所以选其作为绿光Pero?LEDs的HTL。然而,纯的钴基底薄膜存在传输载流子能力较差、薄膜粗糙度较大等问题。因此,本文通过引入有机小分子添加剂乙醇胺(ETA)来有效调控传输层中Co3+/Co2+比例,提升传输层的导电能力。同时,因ETA的加入可以减缓退火过程中前驱体溶液的析出结晶速度,从而形成粗糙度较小的HTL薄膜,进而有利于形成高质量的钙钛矿薄膜。基于掺杂的HTL,其最优器件亮度高达45 207 cd/m2,最大外量子效率(EQE)达到15.08%,是一种性能较好的新型HTL。
钙钛矿发光二极管 醋酸钴 乙醇胺 空穴传输材料 掺杂 perovskite LEDs Co(OAc)2 ethanolamine hole transport layer doping
1 福建省计量科学研究院, 国家光伏产业计量测试中心, 福州 350003
2 福建江夏学院, 钙钛矿绿色应用福建省高校重点实验室, 福州 350108
为进一步降低钙钛矿太阳能电池(PSCs)制备成本, 提高其稳定性, 需要可低温制备、稳定和高效的无机空穴传输层。本文利用太阳能电池模拟软件SCAPS-1D对基于CuS空穴传输层的钙钛矿电池进行电学仿真, 探讨了吸光层的厚度和缺陷态密度、界面层缺陷态密度以及空穴传输层电子亲和能对太阳能电池性能的影响。从模拟结果可知, 当钙钛矿薄膜的厚度为400 nm, 吸光层和界面的缺陷态密度小于10-16 cm-3, 且CuS的电子亲和能为3.3 eV时, 电池性能较佳。优化后的电池性能如下: 开路电压(Voc)为1.07 V, 短路电流(Jsc) 为22.72 mA/cm2, 填充因子(FF)为0.85, 光电转换效率(PCE)为20.64%。本研究为基于CuS的高效钙钛矿太阳能电池的实验制备提供了理论上的指导。
钙钛矿太阳能电池 空穴传输层 数值模拟 界面 缺陷态密度 perovskite solar cell CuS CuS hole-transport layer numerical simulation interface defect density
1 湖北大学物理与电子科学学院 湖北省铁电压电材料实验室,湖北 武汉 430062
2 湖北大学 有机功能分子合成与应用教育部重点实验室,湖北 武汉 430062
卤化铅钙钛矿具有高光吸收系数、长载流子扩散长度和高荧光量子效率等优异光电特性,成为当下光电探测器(PDs)研究领域的热点。但卤化铅钙钛矿的高生物毒性和低环境稳定性制约了该类器件的发展和应用,因此寻找低毒稳定的材料尤为重要。到目前为止,Sn、Ge、Sb、Bi等材料都已得到研究,其中铋基钙钛矿因其稳定、无毒和宽带隙等特性成为候选材料之一。影响PDs性能的因素很多,其中抑制暗电流是提升器件性能的重要手段之一。本文通过溶液旋涂无机化合物CuSCN取代传统PEDOT∶PSS作为空穴传输层(HTL),制备了结构为ITO/CuSCN/Cs3Bi2I6Br3/ZnO/Ag的p‐i‐n型光电探测器。CuSCN最低未占分子轨道(LUMO)能级为 -1.5 eV,与ITO电子注入势垒高达3.3 eV,远高于PEDOT∶PSS与ITO的电子注入势垒(1.8 eV),反向偏压下工作更能有效阻挡电子从ITO电极的注入,因此降低了探测器的暗电流。器件在自供电条件425 nm单色光照射下光电流达6.87×10-6 A,暗电流低至3.52×10-11 A,开关比超过105,相比于基于PEDOT∶PSS空穴传输层的探测器提升了2个数量级。此外,该探测器的上升和下降时间都小于0.12 s,均优于基于PEDOT∶PSS空穴传输层的探测器,这可归因于CuSCN比PEDOT∶PSS具有更高的载流子传输迁移率。结果表明,ITO/CuSCN/Cs3Bi2I6Br3/ZnO/Ag结构的光电探测器具有自供电、高开关比、稳定、无毒等优点,为实现商业化提供了一种可行策略。
无铅钙钛矿 光电探测器 空穴传输层 暗电流 lead-free perovskite photodetector hole transport layer dark current
1 天津中德应用技术大学 能源工程学院, 天津 300350
2 天津理工大学 材料科学与工程学院, 天津 300384
优化界面接触、增强界面处载流子传输对于提高钙钛矿电池性能具有重要意义。本研究将适量二甲基亚砜(DMSO)添加到聚(3,4-乙烯二氧噻吩)-聚(苯乙烯磺酸盐)(PEDOT∶PSS)空穴传输层中, 改善了空穴传输层的导电性和空穴传输特性, 有效提高了反式平面钙钛矿太阳能电池光伏性能。短路电流(Jsc)从21.29 mA/cm2提高到22.15 mA/cm2, 填充因子(FF)从76.35%提高到80.09%, 转换效率(PCE)从16.02%提高到17.01%。薄膜与器件性能综合测试结果表明, DMSO的掺入使PEDOT∶PSS发生适度相分离, 形成更好的PEDOT导电通道, 增强了PEDOT∶PSS的导电特性。 稳态光致发光光谱呈现出显著的荧光猝灭效应, 也表明掺杂 DMSO后PEDOT∶PSS的空穴提取能力得到提高, 钙钛矿活性层与阳极之间的空穴传输更加顺畅, 有助于实现高达 80%以上的填充因子。本研究为改善反式平面钙钛矿太阳电池或有机太阳电池光伏性能提供了一种高效、简便的方法, 具有很好的现实意义。
空穴传输层 电导率 钙钛矿太阳电池 光伏性能 hole transport layer conductivity perovskite solar cell photovoltaic performance

Author Affiliations
Abstract
1 Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Herakleio 70013, Greece
2 Electrical and Computer Engineering Department, Hellenic Mediterranean University, Herakleio 71004, Greece
3 Department of Materials Science and Technology, University of Crete, Herakleio 70013, Greece
4 Department of Physics, University of Crete, Herakleio 70013, Greece
Despite that organic-inorganic lead halide perovskites have attracted enormous scientific attention for energy conversion applications over the recent years, the influence of temperature and the type of the employed hole transport layer (HTL) on the charge carrier dynamics and recombination processes in perovskite photovoltaic devices is still largely unexplored. In particular, significant knowledge is missing on how these crucial parameters for radiative and non-radiative recombinations, as well as for efficient charge extraction vary among different perovskite crystalline phases that are induced by temperature variation. Herein, we perform micro photoluminescence (μPL) and ultrafast time resolved transient absorption spectroscopy (TAS) in Glass/Perovskite and two different Glass/ITO/HTL/Perovskite configurations at temperatures below room temperature, in order to probe the charge carrier dynamics of different perovskite crystalline phases, while considering also the effect of the employed HTL polymer. Namely, CH3NH3PbI3 films were deposited on Glass, PEDOT:PSS and PTAA polymers, and the developed Glass/CH3NH3PbI3 and Glass/ITO/HTL/CH3NH3PbI3 architectures were studied from 85 K up to 215 K in order to explore the charge extraction dynamics of the CH3NH3PbI3 orthorhombic and tetragonal crystalline phases. It is observed an unusual blueshift of the bandgap with temperature and the dual emission at temperature below of 100 K and also, that the charge carrier dynamics, as expressed by hole injection times and free carrier recombination rates, are strongly depended on the actual pervoskite crystal phase, as well as, from the selected hole transport material.Despite that organic-inorganic lead halide perovskites have attracted enormous scientific attention for energy conversion applications over the recent years, the influence of temperature and the type of the employed hole transport layer (HTL) on the charge carrier dynamics and recombination processes in perovskite photovoltaic devices is still largely unexplored. In particular, significant knowledge is missing on how these crucial parameters for radiative and non-radiative recombinations, as well as for efficient charge extraction vary among different perovskite crystalline phases that are induced by temperature variation. Herein, we perform micro photoluminescence (μPL) and ultrafast time resolved transient absorption spectroscopy (TAS) in Glass/Perovskite and two different Glass/ITO/HTL/Perovskite configurations at temperatures below room temperature, in order to probe the charge carrier dynamics of different perovskite crystalline phases, while considering also the effect of the employed HTL polymer. Namely, CH3NH3PbI3 films were deposited on Glass, PEDOT:PSS and PTAA polymers, and the developed Glass/CH3NH3PbI3 and Glass/ITO/HTL/CH3NH3PbI3 architectures were studied from 85 K up to 215 K in order to explore the charge extraction dynamics of the CH3NH3PbI3 orthorhombic and tetragonal crystalline phases. It is observed an unusual blueshift of the bandgap with temperature and the dual emission at temperature below of 100 K and also, that the charge carrier dynamics, as expressed by hole injection times and free carrier recombination rates, are strongly depended on the actual pervoskite crystal phase, as well as, from the selected hole transport material.
transient absorption spectroscopy μ-photoluminescence variable temperature perovskite crystalline phases hole transport layer charge carrier dynamics Opto-Electronic Science
2022, 1(4): 210005
中国科学院大学材料与光电研究中心&材料科学与光电技术学院,北京 100049
对PEDOT∶PSS(聚(3,4亚乙二氧基噻吩)-聚(苯乙烯磺酸))薄膜与Mg、Al和Ag三种金属接触后的I-V特性曲线进行了测试分析,发现Mg和Al与PEDOT∶PSS薄膜接触后呈现高电阻特性,可以起到绝缘隔离层的作用。在此基础上,以PEDOT∶PSS作为空穴传输层,以LiF作为电子传输层,以PEDOT∶PSS与Mg/Al的接触作为隔离层,不采用光刻工艺,设计制备了只需一次掩膜工艺的背接触太阳电池。通过在PEDOT∶PSS上采用热丝氧化升华技术制备MoOx层,通过优化LiF薄膜的厚度,在抛光硅片上初步实现了开路电压最高为592 mV和效率最高为10.13%的背接触太阳电池。采用金属辅助腐蚀制备硅纳米线陷光结构改善前表面陷光效果,得到了开路电压为587 mV,短路电流密度为35.57 mA/cm2,填充因子为69.97%,效率为14.61%的背接触太阳电池。
背接触硅基太阳电池 免光刻工艺 掩膜技术 PEDOT∶PSS空穴传输层 溶液法 interdigitated back contact silicon solar cell lithography-free process shadow mask technology PEDOT∶PSS hole transport layer solution method
1 北京交通大学 1.理学院
2 2.光电子研究所, 北京 100044
碳电极具有成本低、印刷方便、可有效隔离水氧等优点,因此有望利用碳电极材料实现低成本、高稳定性的钙钛矿太阳电池。无空穴传输层的传统碳基钙钛矿太阳电池面临着空穴提取率低、电子逆向传输,钙钛矿和碳电极界面的载流子复合等问题。文章引入聚(3己基噻吩)(P3HT)作为器件的空穴传输层,使碳基钙钛矿太阳电池ITO/SnO2/MAPbI3/P3HT/Carbon的光伏性能得到了显著改善:器件的光电转化效率从11.16% 提高到13.37%。在氮气环境下,连续光照1000h,太阳电池的光电转化效率可保持初始值的87%,而传统器件在光照500h后,其光电转化效率已下降至初始值的60%。
钙钛矿太阳电池 碳电极 稳定 空穴传输层 perovskite solar cells P3HT P3HT carbon electrode stability hole transport layer
1 电子科技大学中山学院 电子薄膜与集成器件国家重点实验室中山分实验室, 广东 中山 528402
2 桂林电子科技大学 广西信息材料重点实验室, 广西 桂林 541004
开发新型无机空穴传输层材料是钙钛矿电池实现商业应用的重要挑战之一。本文开展了二硫化钨纳米片制备及其钙钛矿太阳能电池空穴传输层应用研究。采用液相超声剥离法成功制备了WS2纳米片, 并将其引入钙钛矿太阳能电池中用作空穴传输层。结果表明, 当WS2纳米片溶液浓度为1 mg/mL时, 制备的WS2纳米片空穴传输层具有较合适的厚度, 并且后续在其上生长的钙钛矿活性层成膜质量高、结晶性能好, 电池取得6.3%的光电转换效率。结果证实WS2纳米片可作为新型无机空穴传输层材料用于钙钛矿太阳能电池。
二硫化钨纳米片 液相超声剥离法 钙钛矿太阳能电池 空穴传输层 WS2 nanosheets liquid phase supersonic exfoliation perovskite solar cells hole transport layer
1 电子科技大学 电子科学与工程学院, 成都 610054
2 电子科技大学中山学院 电子薄膜与集成器件国家重点实验室中山分实验室, 广东 中山 528400
3 桂林电子科技大学 广西信息材料重点实验室, 广西 桂林 541004
采用溶液旋涂法在平面异质结型钙钛矿电池中引入氧化石墨烯(Graphene oxide, GO), 制备了GO、GO∶(PEDOT: PSS) 复合薄膜和GO/PEDOT∶PSS双层薄膜作为空穴传输层的电池, 其光电转换效率分别为1.86%、7.35%、7.69%, 基于PEDOT∶PSS空穴传输层的对照电池的效率为7.38%.主要原因是GO具有绝缘性, 作为阳极界面层时, 随着GO薄膜厚度增加, 器件的串联电阻增大, 从而降低了电池的短路电流和效率.为提高GO导电性, 并改善其功函数, 将GO氨化改性后与PEDOT: PSS组合构成双空穴传输层, 所得电池取得了7.69%的较高效率, 表明该方式是GO用于钙钛矿电池空穴传输层的有效途径.
氧化石墨烯 钙钛矿太阳能电池 溶液旋涂法 光电转换效率 空穴传输层 Graphene oxide Perovskite solar cells Solution spin coating Photoelectric conversion efficiency Hole transport layer PEDOT∶PSS PEDOT∶PSS