1 盐城工学院 电气工程学院, 盐城 224051
2 盐城师范学院 物理与电子工程学院 江苏省智能光电器件与测控工程研究中心, 盐城 224007
3 江苏省大气探测激光雷达技术军民融合创新平台, 盐城 224007
传统的测风激光雷达双反射镜式2维扫描系统体积较大、结构相对复杂, 不利于系统小型一体化集成。基于旋转双圆楔形棱镜, 研究了新型2维光学扫描系统; 分析了系统的工作原理, 推导出了双圆楔形棱镜的旋转角与出射光束方位角及天顶角之间的简单正反向函数关系式, 对楔形棱镜的折射率和楔角进行了优化选取和设计。结果表明,当工作波长为532 nm、楔形棱镜材料折射率为2.03时, 最优设计楔角为19.5°; 出射光束最大天顶角不仅取决于楔形棱镜折射率和楔角, 还受光束压缩效应的制约。该系统结构紧凑、便于集成, 能实现出射光束大范围和快速高精度的扫描, 也能实现测风激光雷达以平面位置显示、距离高度显示等光束扫描模式工作。
光学设计 2维扫描系统 测风激光雷达 旋转双楔形棱镜 光束指向 正反解 optical design 2-D scanning system wind LiDAR rotational double wedge prism beam steering forward and inverse solutions
1 北京理工大学 光电学院 光电成像技术与系统教育部重点实验室, 北京 100081
2 安徽科创中光科技股份有限公司, 安徽 合肥 230031
3 中国气象局气象探测中心, 北京 100081
微脉冲激光雷达技术是大气气溶胶观测的重要手段, 当使用紫外激光光源时, 可利用激光诱导荧光信号探测环境中的有机气溶胶。建立了微脉冲荧光激光雷达水平探测有机气溶胶的仿真模型, 并对回波光子数及信噪比进行了数值仿真计算。根据仿真结果设计并搭建了一台微脉冲荧光激光雷达, 通过对系统进行几何重叠因子标定, 减小了近场荧光回波信号的强度误差。以营养肉汤溶液为气溶胶样本对该激光雷达系统开展了测试实验, 实验表明该MPFL系统空间分辨率为7.5m, 实验最大探测距离达到200m。同时与另一台低重频高脉冲能量的荧光激光雷达进行了对比实验, 对比结果显示, 两型激光雷达接收的荧光信号强度变化趋势具有很好的一致性, 相关系数达82%以上。在相同的累加时间下, MPFL荧光信号变化率矩阵标准误差小于0.02%, 具有更好的抗干扰性能, 能够实现对有机气溶胶准确探测, 验证了系统有效性和实用性。
大气光学 微脉冲激光雷达 水平探测 几何重叠因子 atmosphere optics micro-pulse lidar horizontal detection geometric overlap factor
1 东南大学仪器科学与工程学院,江苏 南京 210096
2 微惯性仪表与先进导航技术教育部重点实验室,江苏 南京 210096
3 国网江苏省电力有限公司南京供电公司,江苏 南京 210019
针对单一传感器难以解决激光雷达在运动场景中因为点云畸变和误差累积产生的运动失真与定位精度差的问题,提出一种融合惯性测量单元数据和轮速计数据的激光雷达点云畸变矫正与定位方法。首先,以激光雷达数据为时刻基准,利用积分的方法对惯性测量单元和轮速计的数据进行预处理;之后,将融合数据与激光雷达数据融合,以矫正产生畸变的激光点云;最后,利用线性插值的方式来保证传感器间数据的时间同步,并将计算的位姿作为里程计迭代计算的初值,降低计算复杂度并提高里程计的定位精度。实验结果表明,相比没有采用多传感器融合的传统方案(LOAM、F-LOAM),在公开数据集实验中,所提方法的定位均方根误差分别降低了81.11%和21.54%,在自测数据集实验中,定位均方根误差分别降低了52.76%和24.29%。
激光雷达 畸变补偿 多传感器融合 激光雷达里程计 LiDAR distortion compensation multisensor fusion LiDAR odometer 激光与光电子学进展
2023, 60(24): 2428003
大气与环境光学学报
2023, 18(5): 426
1 浙江大学光电科学与工程学院极端光学技术与仪器全国重点实验室,浙江 杭州 310027
2 东海实验室,浙江 舟山 316021
3 浙江大学杭州国际科创中心,浙江 杭州 311200
4 浙江大学嘉兴研究院,浙江 嘉兴 314000
5 浙江大学地球科学学院浙江省地学大数据与地球深部资源重点实验室,浙江 杭州 310027
6 浙江大学宁波科创中心,浙江 宁波 315100
7 无锡中科光电技术有限公司,江苏 无锡 214135
气溶胶是地气系统辐射强迫评估的主要不确定来源之一,激光雷达探测的气溶胶廓线数据有助于定量评估气溶胶的气候效应。除已发布的气溶胶观测产品外,大量气溶胶激光雷达观测数据分布于文献中。然而,目前尚缺乏对气溶胶历史文献数据的整合分析。因此,聚焦现有观测产品较缺乏的激光雷达比参数,充分考虑气溶胶的类型差异,提出了一种激光雷达比历史文献数据的模糊综合评价分析方法。基于Web of Science数据库,发现不同类型气溶胶(沙尘、沙尘混合、火山灰、海洋、烟尘、城市工业气溶胶)的激光雷达比均呈高斯分布,且集中范围均存在重叠。历史文献数据能与气溶胶观测数据产品提供的数据形成互补,所提出的模糊综合评价分析方法有助于提升人们对气溶胶光学特性的认识。
气溶胶 激光雷达比 历史数据 模糊综合评价 aerosol lidar ratio historical data fuzzy comprehensive evaluation 光学学报
2023, 43(24): 2401009
激光与光电子学进展
2023, 60(24): 2428002
中国激光
2023, 50(23): 2310002
1 西安理工大学机械与精密仪器工程学院, 陕西 西安 710048
2 陕西省现代装备绿色制造协同创新中心, 陕西 西安 710048
苯作为挥发性有机化合物(VOCs)的重要组成部分, 其大气污染状况日益引起人们的关注, 中红外波段通常是分子的基频指纹吸收区, 已成为痕量气体检测的重要波段, 而差分吸收激光雷达是探测大气痕量气体的重要手段, 故针对区域性苯浓度实时遥感问题, 提出基于中红外带间级联激光器(ICL)的探测大气苯浓度路径积分型差分吸收(IPDA)激光雷达系统。 首先, 在分析IPDA激光雷达的探测原理的基础上, 构建了IPDA激光雷达的反演算法及其误差分析模型。 其次, 详细分析来自HITRAN数据库的中红外3 100 cm-1附近苯以及主要干扰气体(如HCl, CH4和H2O)的吸收光谱, 结合HCl和CH4着重考虑了H2O对探测结果的影响, 选择IPDA激光雷达的测量波长和参考波长分别为3 090.89和3 137.74 cm-1。 再次, 基于两个连续波ICL, 设计了探测大气苯浓度IPDA激光雷达系统, 并可通过控制温度和驱动电流调谐激光器的输出波长, 使其波长分别稳定在强吸收谱区和弱吸收谱区, 并设计了基于中红外衍射光栅的光谱分光子系统, 以实现双波长接收信号的同步探测。 最后, 基于标准大气模型, 仿真分析了不同路径长度、 能见度和水汽浓度情况下激光雷达的探测性能, 并搭建中红外波段检测气体池开展了测试实验, 以验证该IPDA激光雷达系统的可行性。 仿真及实验结果分析表明, 当大气能见度为5 km, 水汽浓度低于0.4%时, 苯的浓度路径积(CL)在0.1~24 mg·m-3·km范围内探测的相对误差优于10%, 而苯的CL为5 mg·m-3·km时探测相对误差优于1%; 初步实验测试了中外红波段差分吸收激光雷达探测的线性相关系数R2约为98.7%。
中红外光谱 激光雷达 差分吸收光谱 苯浓度 Mid-infrared spectroscopy Lidar Differential absorption spectrum Benzene concentration 光谱学与光谱分析
2023, 43(11): 3351
激光与光电子学进展
2023, 60(22): 2215006
1 安徽建筑大学电子与信息工程学院, 安徽 合肥 230601
2 南京邮电大学江苏省图像处理与图像通信重点实验室, 江苏 南京 210003
3 北京航空航天大学无人机学院, 北京 100191
4 安徽省古建筑智能感知与高维建模国际联合研究中心, 安徽 合肥 230601
利用高光谱激光雷达系统采集涂改车牌空间-光谱域信息,根据车牌逆反射特性,设计基于光谱特征的两次阈值法实现涂改车牌识别。首先计算光谱特征波长,利用一次阈值法分离车牌部分和涂改部分;其次,计算特征波段内车牌部分各点的光谱反射率曲线的梯度值,利用二次阈值法判别涂改类型(背景转字符涂改和字符转背景涂改);最后,根据涂改类型重建正确车牌字符,将重建信息与二维平面数据融合得到正确的二维车牌图像,送给车牌识别系统进行识别。实验结果表明该方法可实现多种涂改材料以及多种涂改类型的涂改车牌识别。
遥感 高光谱激光雷达 反射率 涂改车牌 remote sensing hyperspectral lidar reflectance altered license plate