Author Affiliations
1 School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
2 Research Institute of Future Technology, South China Normal University, Guangzhou, China
In this work, we present a high-power, high-repetition-rate, all-fiber femtosecond laser system operating at 1.5 $\unicode{x3bc}$ m. This all-fiber laser system can deliver femtosecond pulses at a fundamental repetition rate of 10.6 GHz with an average output power of 106.4 W – the highest average power reported so far from an all-fiber femtosecond laser at 1.5 $\unicode{x3bc}$ m, to the best of our knowledge. By utilizing the soliton-effect-based pulse compression effect with optimized pre-chirping dispersion, the amplified pulses are compressed to 239 fs in an all-fiber configuration. Empowered by such a high-power ultrafast fiber laser system, we further explore the nonlinear interaction among transverse modes LP01, LP11 and LP21 that are expected to potentially exist in fiber laser systems using large-mode-area fibers. The intermodal modulational instability is theoretically investigated and subsequently identified in our experiments. Such a high-power all-fiber ultrafast laser without bulky free-space optics is anticipated to be a promising laser source for applications that specifically require compact and robust operation.
high-power femtosecond fiber laser high repetition rate intermodal modulational instability nonlinear pulse compression 
High Power Laser Science and Engineering
2023, 11(4): 04000e50
Author Affiliations
1 School of Information Science and Engineering, Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao, China
2 Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Qingdao, China
3 Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
4 Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services, SCCE, University of Science and Technology Beijing, Beijing, China
We firstly report a 2-μm all-fiber nonlinear pulse compressor based on two pieces of normal dispersion fiber (NDF), which enables a high-power scaling ability of watt-level and a high pulse compression ratio of 13.7. With the NDF-based all-fiber nonlinear pulse compressor, the 450-fs laser pulses with a repetition rate of 101.4 MHz are compressed to 35.1 fs, corresponding to a 5.2 optical oscillation cycle at the 2-μm wavelength region. The output average power reaches 1.28 W, which is believed to be the highest value never achieved from the previous 2-μm all-fiber nonlinear pulse compressors with a high pulse repetition rate above 100 MHz. The dynamic evolution of the ultrafast pulse inside the all-fiber nonlinear pulse compressor is numerically analyzed, matching well with the experimental results.
few-optical-cycle pulses high pulse repetition rate nonlinear pulse compression 
High Power Laser Science and Engineering
2023, 11(1): 01000e14
高梓宸 1,2郭洁 1,*梁晓燕 1,*
1 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
2 中国科学院大学材料与光电研究中心, 北京 100049
激光光学 全固态激光器 非线性脉冲压缩 自相位调制 laser optics all-solid-state laser nonlinear pulse compression self-phase modulation 
2021, 48(5): 0501007

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。