Author Affiliations
1 School of Physics, East China University of Science and Technology, Shanghai 200237, China
2 Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai 200237, China
3 Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai 200237, China
Nitrogen-vacancy (NV) centers in diamond are progressively favored for room-temperature magnetic field measurement. The signal to noise ratio (SNR) optimization for NV diamond magnetometry generally concentrates on signal amplitude enhancement rather than efficient noise processing. Here, we report a compound filter system combining a wavelet denoising method and an adaptive filter for the realization of an efficient weak magnetic measurement with a high SNR. It allows enhanced magnetic field measurement with an average SNR enhancement of 17.80 dB at 50 nT within 500 mHz to 100 Hz and 14.76 dB at 500 mHz within 50 nT to 1100 nT. The introduction of this system in NV diamond magnetometry is aimed to improve signal quality by effectively eliminating the noise and retaining ideal signals.
nitrogen-vacancy center quantum sensing signal processing 
Chinese Optics Letters
2023, 21(11): 111201
张皓铭 1,2熊威 1,2韩翔 1,2陈鑫麟 1,2[ ... ]罗晖 1,2
1 国防科技大学 前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学 南湖之光实验室,湖南 长沙 410073
悬浮光力学 量子传感 光阱 精密测量 levitated optomechanics quantum sensing optical tweezers precision measurements 
2023, 52(6): 20230193
中国科学技术大学中国科学院量子信息重点实验室,安徽 合肥 230026
氮-空位色心 光纤 量子传感 nitrogen-vacancy optical fiber quantum sensing 
2023, 60(11): 1106001
Author Affiliations
1 Sapienza Università di Roma, Dipartimento di Fisica, Roma, Italy
2 Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
Estimation of physical quantities is at the core of most scientific research, and the use of quantum devices promises to enhance its performances. In real scenarios, it is fundamental to consider that resources are limited, and Bayesian adaptive estimation represents a powerful approach to efficiently allocate, during the estimation process, all the available resources. However, this framework relies on the precise knowledge of the system model, retrieved with a fine calibration, with results that are often computationally and experimentally demanding. We introduce a model-free and deep-learning-based approach to efficiently implement realistic Bayesian quantum metrology tasks accomplishing all the relevant challenges, without relying on any a priori knowledge of the system. To overcome this need, a neural network is trained directly on experimental data to learn the multiparameter Bayesian update. Then the system is set at its optimal working point through feedback provided by a reinforcement learning algorithm trained to reconstruct and enhance experiment heuristics of the investigated quantum sensor. Notably, we prove experimentally the achievement of higher estimation performances than standard methods, demonstrating the strength of the combination of these two black-box algorithms on an integrated photonic circuit. Our work represents an important step toward fully artificial intelligence-based quantum metrology.
quantum sensing integrated photonics machine learning for metrology 
Advanced Photonics
2023, 5(1): 016005
Haobin Lin 1,2,3Ce Feng 1,2,3Yang Dong 1,2,3Wang Jiang 1,2,3[ ... ]Fangwen Sun 1,2,3
Author Affiliations
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
4 National Key Laboratory of ASIC, Hebei Semiconductor Research Institute, Shijiazhuang 050051, China
Nitrogen-vacancy color centers can perform highly sensitive and spatially resolved quantum measurements of physical quantities such as magnetic field, temperature, and pressure. Meanwhile, sensing so many variables at the same time often introduces additional noise, causing a reduced accuracy. Here, a dual-microwave time-division multiplexing protocol is used in conjunction with a lock-in amplifier in order to decouple temperature from the magnetic field and vice versa. In this protocol, dual-frequency driving and frequency modulation are used to measure the magnetic and temperature field simultaneously in real time. The sensitivity of our system is about 3.4 nT/Hz and 1.3 mK/Hz, respectively. Our detection protocol not only enables multifunctional quantum sensing, but also extends more practical applications.
quantum sensing temperature measurement magnetic field measurement 
Chinese Optics Letters
2023, 21(1): 011201
张星 1,2,*张建伟 1,2周寅利 1,2薛洪波 3[ ... ]王立军 1
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 长春中科长光时空光电技术有限公司, 吉林 长春 130102
3 中国科学院 国家空间科学中心, 北京 100190
为了研制出表面微透镜集成外腔的垂直腔面发射激光器(VCSEL),实现窄线宽无磁激光输出,满足原子磁强计等量子传感器应用要求,本文设计并生长了适合于表面集成微透镜的VCSEL外延结构,完成了表面微透镜集成外腔VCSEL器件制备,在电极材料方面选取无磁材料以满足应用要求。实验结果表明:研制的VCSEL器件工作温度达到90 °C,激光波长为896.3 nm,功率为1.52 mW,边模抑制比为36.3 dB,激光线宽为38 MHz,封装为模组后的磁场强度低于0.03 nT。结果表明本文研制的窄线宽无磁VCSEL满足量子传感的应用需求。
垂直腔面发射激光器 量子传感 高温 窄线宽 无磁 Vertical-Cavity Surface-Emitting Laser (VCSEL) quantum sensing high temperature narrow linewidth magnetism-free 
2022, 15(5): 1038
林俊杰 1琚志平 1王希玮 2,3王笃福 2,3[ ... ]武愕 1,4
1 华东师范大学 精密光谱科学与技术国家重点实验室, 上海 200241
2 山东大学 山东省金刚石材料与半导体器件重点实验室, 济南 250101
3 济南金刚石科技有限公司, 济南 250101
4 山西大学 极端光学协同创新中心, 山西 030006
为了解决在基于金刚石氮-空位(NV)色心的磁场高灵敏度测量中, 高速获取磁场信号引起的NV色心发光强度的微小变化的技术瓶颈问题, 自行设计出一套能够实现金刚石NV色心自发辐射和受激辐射信号同步测量的光学系统, 并利用一个长焦距透镜收集金刚石NV色心受激辐射信号, 从而尽最大可能地滤除金刚石NV色心的自发辐射信号, 提高测量受激放大增益的信噪比。实验中成功观察到NV色心零声子线的受激辐射放大, 分析了抽运光功率、信号光功率、抽运光偏振方向和信号光偏振方向对放大特性的影响。结果表明, 通过对抽运光和信号光相关参量的优化调整, 最终获得了10.5%的受激辐射增益。该研究为实现NV光放大远程磁场监测奠定了研究基础。
激光技术 受激辐射放大 金刚石色心 量子传感 磁场测量 laser technique stimulated radiation amplification diamond color center quantum sensing magnetic field measurement 
2022, 46(1): 64
Author Affiliations
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3 Hefei National Laboratory for Physical Science at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026, China
The nitrogen vacancy (NV) center in diamond has been well applied in quantum sensing of electromagnetic field and temperature, where the sensitivity can be enhanced by the number of NV centers. Here, we used electron beam irradiation to increase the generation rate of NV centers by nearly 22 times. We systematically studied the optical and electronic properties of the NV center as a function of an electron irradiation dose, where the detection sensitivity of magnetic fields was improved. With such samples with dense NV centers, a sub-pico-Tesla sensitivity in magnetic fields detection can be achieved with optimal controls and detections.
quantum sensing nitrogen vacancy center generation electron irradiation 
Chinese Optics Letters
2020, 18(8): 080201
徐世龙 1,2,*胡以华 1,2赵楠翔 1,2李乐 1,2郭力仁 1,2
1 电子工程学院 脉冲功率激光技术国家重点实验室,合肥 230037
2 电子工程学院 电子制约技术安徽省重点实验室,合肥 230037
量子信息 量子感知 量子纠缠 量子照明 路径纠缠Fock态 目标探测 Quantum information Quantum Sensing Quantum entanglement Quantum illumination Path-entangled fock states Target detection 
2016, 45(6): 0627001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。