Author Affiliations
1 Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, School of Microelectronics, Tianjin University, Tianjin 300072, China
2 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
3 State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
4 Key Laboratory of High Speed Circuit Design and EMC of Ministry of Education, School of Electronic Engineering, Xidian University, Xi’an 710071, China
5 Huawei Technologies Company Ltd., Shanghai 518129, China
6 Department of Electronic and Electrical Engineering, University College London, London WC1E7JE, UK
7 Key Laboratory of Micro-Nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
Plasmonics could provide compact and powerful solutions for manipulating light in deep-subwavelength dimensions, which is promising for a great range of nanophotonic technologies such as plasmonic rulers and sensors. However, the effective area of enhanced localized field induced by surface plasmon polaritons is typically restricted to the structural boundaries. In this work, we propose a method to generate high quality-factor extended electromagnetic fields via hybridizing the super-radiant state and the quasi bound state in the continuum of graphene metasurfaces. The coupling interaction involved operates as a three-level system with multiple sharp resonances immune to the polarization, which holds great promise for developing nanodevices with high sensing capacity in two dimensions.
plasmon hybridization quasi bound state in the continuum high-Q sensing 
Chinese Optics Letters
2022, 20(4): 042201
Author Affiliations
1 University of New South Wales, School of Engineering and Information Technology, Canberra, Australian Capital Territory, Australia
2 Nottingham Trent University, School of Science and Technology, Department of Engineering, Advanced Optics and Photonics Laboratory, Nottingham, United Kingdom
3 The Australia National University, Research School of Physics, Department of Electronic Material Engineering, ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Canberra, Australian Capital Territory, Australia
High-index dielectric resonators support different types of resonant modes. However, it is challenging to achieve a high-Q factor in a single dielectric nanocavity due to the non-Hermitian property of the open system. We present a universal approach of finding out a series of high-Q resonant modes in a single nonspherical dielectric cavity with a rectangular cross section by exploring the quasi bound-state-in-the-continuum (QBIC). Unlike conventional methods relying on heavy brutal force computations (i.e., frequency scanning by the finite difference time domain method), our approach is built upon Mie mode engineering, through which many high-Q modes can be easily achieved by constructing avoid-crossing (or crossing) of the eigenvalue for pair-leaky modes. The calculated Q-factor of mode TE(5,7) can be up to Qtheory = 2.3 × 104 for a freestanding square nanowire (NW) (n = 4), which is 64 times larger than the highest Q-factor (Qtheory ≈ 360) reported so far in a single Si disk. Such high-Q modes can be attributed to suppressed radiation in the corresponding eigenchannels and simultaneously quenched electric (magnetic) field at momentum space. As a proof of concept, we experimentally demonstrate the emergence of the high-Q resonant modes [Q ≈ 211 for mode TE(3,4), Q ≈ 380 for mode TE(3,5), and Q ≈ 294 for mode TM(3,5)] in the scattering spectrum of a single silicon NW.
Mie resonance leaky mode quasi bound state in the continuum high-Q mode dielectric nanocavity 
Advanced Photonics
2021, 3(1): 016004
范策 1,2王宇飞 1,3屈晋先 1郑婉华 1,2,3,4,*
1 中国科学院半导体研究所 固态光电信息技术实验室, 北京 100083
2 中国科学院大学 材料科学与光电工程中心, 北京 100049
3 中国科学院大学 未来技术学院, 北京 101408
4 中国科学院半导体研究所 集成光电子国家重点实验室, 北京 100083
光子晶体等人工微结构中出现的连续域束缚态(BIC)处于光锥以上却不与背景泄漏模耦合, 具有无限高的品质因数(Q值), 构建在BIC或准BIC工作的激光器具有低阈值的优点。而低对比度光栅常用于低成本激光器的模式调制和耦出。针对激光器简化三层平板结构, 提出利用上盖层刻蚀低对比度光栅诱导出Q值高达9.2×105的准BIC模式, 并发现激光腔中模式的Q值对有源层的厚度变化相比上盖层光栅刻蚀深度的变化更敏感, 且下盖层的厚度变化使Q值被周期性增强, 准BIC的Q值可以被增强到9.66×106。研究结果对光栅基的低阈值电注入面发射激光器的设计具有指导意义。
激光器 准连续域束缚态 低对比度光栅 品质因数 阈值 lasers quasi bound state in the continuum low-contrast grating Q factor threshold 
2020, 41(5): 627

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。