1 西安交通大学, 电子物理于器件教育部重点实验室, 西安 710049
2 西安交通大学电子与信息学部, 宽禁带半导体与量子器件研究所, 西安 710049
相较于传统的硅材料, 宽禁带半导体材料更适合制作高压、高频、高功率的半导体器件, 被认为是后摩尔时代材料创新的关键角色。单晶金刚石拥有大禁带宽度、高热导率、高迁移率等优异特性, 更是下一代大功率、高频电子器件的理想半导体材料。然而由于可获得单晶金刚石的尺寸较小, 且价格昂贵, 极大地阻碍了金刚石的发展。历经长时间的探索, 异质外延生长技术成为了获得高质量、大面积单晶金刚石的有效手段。本综述从金刚石异质外延的衬底选择、生长机理以及质量改善等方面对近些年来异质外延单晶金刚石的发展进行详细介绍。进一步地, 对基于异质外延单晶金刚石的场效应晶体管和二极管的研究进行了总结, 说明了异质外延单晶金刚石在电子器件领域的巨大潜力。最后总结了异质外延单晶金刚石仍需面对的挑战, 展望了其在未来的应用与发展前景。
单晶金刚石 异质外延生长 宽禁带半导体 半导体器件 场效应晶体管 二极管 single-crystal diamond heteroepitaxial growth wide-band gap semiconductor semiconductor device field-effect transistor diode
1 山东大学新一代半导体材料研究院, 济南 250100
2 山东大学晶体材料国家重点实验室, 济南 250100
3 专用集成电路国家级重点实验室, 石家庄 050051
4 中国电子科技集团公司第十三研究所, 石家庄 050051
随着金刚石作为散热材料在大功率半导体器件、激光器、微波器件和大规模集成电路等领域中的应用愈加广泛, 通过对金刚石局部进行精确测温以评价其散热性能是一个重要的研究课题。本文使用拉曼光谱仪对不同掺杂类型的高温高压(HTHP)样品和化学气相沉积(CVD)样品在228~678 K进行检测, 得到了金刚石样品TO模拉曼峰位、半峰全宽等与温度的一一对应关系, 并通过理论计算模型明确了热膨胀、三声子、四声子随温度变化对拉曼峰位、半峰全宽的贡献。理论和实验测试结果发现: 不同掺杂以及不同类型样品的拉曼光谱峰位无明显区别; 随温度升高, 半峰全宽宽化, 主要影响因素为声子衰减导致的非简谐效应, 同时受载流子的电离率、浓度、类型, 以及缺陷和杂质影响; 声子寿命主要受到声子的非简谐衰减作用影响, 基本不受杂质散射的影响。本研究为金刚石材料的温度检测提供了一种无损、非接触、高空间分辨率的方法。
单晶金刚石 拉曼光谱 掺杂 温度相关性 声子衰减 声子寿命 single crystal diamond Raman spectrum doping temperature dependency phonon decay phonon lifetime
1 武汉工程大学材料科学与工程学院,湖北省等离子体化学与新材料重点实验室,武汉 430205
2 上海征世科技股份有限公司,上海 201700
本文研究了在反应气体中引入不同浓度的CO2对微波等离子体化学气相沉积(MPCVD)法同质外延生长单晶金刚石内应力的影响,并对其作用机理进行了分析。研究发现,随着CO2浓度增加,单晶金刚石内应力逐渐减小,这是由于添加的CO2提供了含氧基团,可以有效刻蚀金刚石生长过程中的非金刚石碳,并能够降低金刚石中杂质的含量,从而避免晶格畸变,减少生长缺陷,并最终表现为单晶金刚石内应力的减小,其中金刚石内应力以压应力的形式呈现。此外反应气体中加入CO2可以降低单晶金刚石的生长速率和沉积温度,且在合适的碳氢氧原子比(5∶112∶4)下能够得到杂质少、结晶度高的单晶金刚石。
单晶金刚石 同质外延 内应力 二氧化碳 single crystal diamond MPCVD MPCVD homogeneous epitaxy internal stress carbon dioxide
1 华侨大学制造工程研究院,厦门 361021
2 苏州赛尔特新材料有限公司,苏州 215127
金刚石因其优异的物理性质被视为下一代半导体材料,然而其极高的硬度、脆性和耐腐蚀性导致其加工困难,尤其是对于大尺寸的化学气相沉积(chemical vapor deposition, CVD)单晶金刚石(SCD)晶片而言,目前还缺乏一种高效、低成本的磨抛加工方法。本文提出一种基于工件自旋转的同心双砂轮磨抛一体化加工技术,在一次装夹中,先采用金刚石磨料的陶瓷内圈砂轮磨削单晶金刚石晶片表面,将单晶金刚石表面迅速平坦化,后采用金刚石与CuO混合磨料的外圈溶胶-凝胶(sol-gel,SG)抛光轮抛光单晶金刚石晶片表面,使其在较短时间内完成从原始生长面(Sa约46 nm)到原子级表面精度(Sa<0.3 nm)的加工。磨削加工中,硬质金刚石磨料的陶瓷砂轮高速划擦金刚石晶片表面,在强机械作用下获得较大的材料去除以及纳米级的光滑单晶金刚石表面,同时引起进一步的表面非晶化;SG抛光加工中,硬质金刚石磨料高速划擦单晶金刚石表面形成高温高压环境,进一步诱导CuO粉末与单晶金刚石表面的非晶碳发生氧化还原反应,实现反应抛光。磨抛一体化的加工技术为晶圆级的单晶、多晶金刚石的工业化生产提供借鉴。
CVD单晶金刚石 磨抛一体化 反应抛光 粗糙度 陶瓷砂轮 SG轮 CVD single crystal diamond integration technology of grinding and polishing reactive polishing roughness ceramic grinding wheel SG wheel
1 西安交通大学,电子物理与器件教育部重点实验室,西安 710049
2 西安交通大学电子与信息学部,宽禁带半导体与量子器件研究所,西安 710049
突破高质量、高效金刚石掺杂技术是实现高性能金刚石功率电子器件的前提。本文利用微波等离子体化学气相沉积(MPCVD)法,以三甲基硼为掺杂源,制备出表面粗糙度0.35 nm,XRD(004)摇摆曲线半峰全宽28.4 arcsec,拉曼光谱半峰全宽3.05 cm-1的高质量硼掺杂单晶金刚石。通过改变气体组分中硼元素的含量,实现了1016~1020 cm-3的p型金刚石可控掺杂工艺。随后,研究了硼碳比、生长温度、甲烷浓度等工艺条件对p型金刚石电学特性的影响,结果表明:在硼碳比20×10-6、生长温度1 100 ℃、甲烷浓度8%、腔压160 mbar(1 mbar=100 Pa)时p型金刚石迁移率达到207 cm2/(V·s)。通过加氧生长可以提升硼掺杂金刚石结晶质量,降低杂质散射。当氧气浓度为0.8%时,样品空穴迁移率提升至 614 cm2/(V·s)。
单晶金刚石 p型掺杂 硼掺杂 同质外延 硼碳比 甲烷浓度 硼氧共掺 空穴迁移率 single crystal diamond p-type doping boron doping MPCVD MPCVD homoepitaxial B/C ratio methane concentration B-O co-doping hole mobility
中国激光
2022, 49(10): 1002406
武汉工程大学材料科学与工程学院, 湖北省等离子体化学与新材料重点实验室, 湖北 武汉 430073
采用微波等离子体化学气相沉积法,在半开放式样品台上通过调整种晶在样品台中的凸出高度(Δh)实现了对微波等离子体中基团分布的调控,并进行了单晶金刚石的侧向外延扩大生长研究。将发射光谱与金刚石样品的傅里叶变换红外光谱、Raman光谱、白光干涉测试结果及光学形貌表征结果结合起来,分析了种晶在样品台中的凸出高度对侧向外延生长单晶金刚石的影响。结果表明:随着凸出高度增大,等离子体中的C2(516.08 nm)基团在中心区域(-2~2 mm)的相对浓度增加,当凸出高度为0.6 mm时,中心区域碳源基团的浓度相对较高,导致该区域的纵向生长速率略高于周围区域的纵向生长速率,有利于生长面自主形成偏离(100)晶面一定角度的倾斜结构,进而侧向扩大生长出无多晶金刚石外圈且红外光学透过性能优异的单晶金刚石。顶部生长面自主形成一定角度的倾斜结构,是实现单晶金刚石侧向外延扩大生长的关键。继续增大凸出高度至0.8 mm,就会导致中心区域C2(516.08 nm)基团的相对浓度过高,形成金字塔丘状体,反而不利于高质量单晶金刚石的外延生长。
材料 单晶金刚石 发射光谱 基团分布 微波等离子体 material single-crystal diamond optical emission spectrum radicals distribution microwave plasma 光学学报
2021, 41(20): 2016001
中国科学院大学材料科学与光电技术学院,北京 100049
本文对CVD(Chemical Vapour Deposition, CVD)外延生长中作为衬底的高温高压(HTHP)单晶金刚石进行拉曼光谱测试,利用谱峰半高宽(FWHM)判断了衬底的结晶质量。开展了升温(室温~1 000 ℃)和降温(1 000 ℃~室温)过程中衬底晶格变化的X射线原位测量研究。实验表明: 衬底的晶格常数随温度变化而变化,在1 000 ℃时因晶格变化而产生的应力大小为GPa量级。晶格常数在降温过程要比升温过程的数值大,线膨胀系数的计算结果也发现了相同的现象。根据傅里叶红外光谱仪(FT-IR)测试结果推断: 造成上述变温过程中晶格变化差异的原因在于样品中氮浓度的不同,其中氮浓度越高,拉曼光谱的半高宽越大,衬底的晶格常数变化越大,线膨胀系数越大。
单晶金刚石 衬底 晶格常数 膨胀系数 氮浓度 拉曼光谱 single crystal diamond substrate lattice constant nitrogen concentration expansion coefficient FT-IR FT-IR Raman spectrum
1 哈尔滨工业大学航天学院,哈尔滨 150001
2 上海卫星装备研究所,上海 200240
采用微波等离子体化学气相沉积(MPCVD)技术制备的大尺寸、高质量单晶金刚石材料具备卓越的物理化学性能,在珠宝、电子、核与射线探测等消费品、工业和**科技领域极具应用前景。研究发现在化学气相沉积单晶金刚石生长过程中,在衬底与外延层之间,以及生长中途停止-继续生长的生长层之间出现明显的界面区。本文采用偏光显微镜、拉曼光谱、荧光光谱(PL)等手段对界面区域进行了测试分析,界面区在偏光显微镜下表现出因应力导致的亮区,且荧光光谱(PL)及其线扫描显示该区域的NV色心含量远高于衬底及其前后外延层,表明该界面区具有较高的缺陷和杂质含量。结果表明在生长高品质单晶金刚石初期就应当采取一定手段进行品质调控,并尽量在一个生长周期内完成制备。
单晶金刚石 微波导离子体化学气相沉积 界面 拉曼光谱 PL光谱 single crystal diamond microwave plasma chemical vapor deposition (MPCVD) interface Raman spectrum PL spectrum