作者单位
摘要
1 西南石油大学计算机科学学院,四川成都 610500
2 四川省人民医院 a.心血管超声及心功能科
3 b.超声心脏电生理学与生物力学四川省重点实验室,四川成都 610072
针对医学超声图像的分辨率低而导致视觉效果差的问题,使用基于神经网络的图像超分辨率(SR)重建方法提升医学超声图像的分辨率。采用针对自然图像超分辨率重建的生成对抗网络(SRGAN)作为基本方法,通过减少 2个输入通道和删除 1个残差块对该网络的结构进行更改,并且改进网络损失函数,新增模糊处理数据集,使该网络适应医学超声图像所具备的灰度图像、散斑纹理单一等特点,从而重建出放大 4倍的边缘清晰没有伪影的医学超声图像。将改进 SRGAN与原始 SRGAN的结果相比,峰值信噪比(PSNR)和结构相似性(SSIM)分别有 1.792 dB和 3.907%的提升; 与传统双立方插值的结果相比,PSNR和 SSIM分别有 2.172 dB和 8.732%的提升。
超分辨率重建 生成对抗网络 乳腺超声图像 残差块 亚像素卷积层 super-resolution reconstruction Generative Adversarial Network breast ultrasound image residual block sub-pixel convolution layer 
太赫兹科学与电子信息学报
2023, 21(5): 677
作者单位
摘要
长春理工大学 计算机科学技术学院,吉林长春130022
针对光场成像中因硬件限制而造成的光场图像角度分辨率低的问题,提出一种融合3D对极平面图像的光场角度超分辨重建方法。该方法首先将输入图像按不同的视差方向排列分别进行特征提取,以充分利用输入图像的视差信息,提高深度估计的准确性。利用深度图将输入图像映射到新视角位置,生成初始合成光场。为了使重建光场图像能够保持更好的细节信息及几何一致性,先通过水平3D对极平面图像融合重建分支和垂直3D对极平面图像融合重建分支,分别对初始合成光场进行水平融合重建和垂直融合重建,再将两个结果进行混合重建,生成最终的高角度分辨率光场图像。实验结果表明:相比于现有方法,本文方法在合成光场数据集和真实光场数据集上的重建效果均得到了提高,峰值信噪比的提升幅度最高达1.99%,有效地提高了重建光场的质量。
光场 超分辨重建 3D对极平面图像 卷积神经网络 light field super-resolution reconstruction 3D epipolar plane image convolution neural network 
光学 精密工程
2023, 31(21): 3167
作者单位
摘要
1 河北工程大学 数理科学与工程学院,邯郸 056038
2 河北省计算光学成像与光电检测技术创新中心,邯郸 056038
为了避免传统全息重建方法步骤繁杂且重建效果易受噪声干扰等问题,采用一种改进的语义分割U型网络用于全息图超分辨重建工作。首先引入新型的端侧神经网络,用来充分获取更多的图像语义信息,增强网络学习性能; 其次加入深度神经卷积网络的高效通道注意力以提高网络关注全息图中细节信息的能力,进一步提升网络精度,同时采用带泄露修正线性单元作为激活函数,加快网络收敛; 并采用血细胞和鸡血细胞的低分辨率全息图进行训练,取得了超分辨重建强度和位相图。结果表明,改进网络能够快速重建出细节信息丰富、边缘纹理清晰、背景平坦的位相和强度图像,血细胞强度重建图的结构相似性指数和峰值信噪比分别达到0.9613和27.38,同时可对不同尺度的全息图进行重建。该研究为使用深度学习方法提高全息图质量提供了参考。
全息 超分辨重建 通道注意力机制 端侧神经网络 多尺度重建 holography super-resolution reconstruction channel attention mechanism end-side neural network multi-scale reconstruction 
激光技术
2023, 47(4): 485
作者单位
摘要
昆明理工大学 信息与自动化学院, 云南 昆明 650504
针对现有单图像超分辨率方法在重建过程中容易忽略原图像中不同结构-纹理的差异与联系,导致生成的高分辨率图像缺乏纹理细节并存在伪影的问题,提出了纹理细节恢复的图像超分辨率重建算法。该方法由梯度分支、纹理分支和图像超分辨率分支组成。其中,在梯度分支和纹理分支之间使用了类注意力模块处理二者的特征混淆问题,并通过双向特征融合模块实现了对结构特征与纹理特征的相互促进,作为先验信息以达到纹理细节信息增强的目的。此外,在图像超分辨率分支还通过构建特征恢复模块,利用浅层和深层信息帮助网络保留了图像中更丰富的上下文信息和纹理细节。该方法通过在DIV2K数据集上进行了网络训练,并在5个基准测试集Set5、Set14、BSD100、Urban100和MANGA109上进行了实验,峰值信噪比(PSNR, Peak Signal to Noise Ratio)分别:37.88dB、33.28dB、32.0781dB、31.89dB、38.39dB,相比现有方法均有显著提升。实验结果表明,本文方法获得了有效的重建图像并且保留更多的图像细节,生成具有边缘清晰和逼真细节的超分辨率图像。
超分辨率重建 结构-纹理 先验信息 上下文信息 super-resolution reconstruction structure-texture prior information context information 
光学技术
2023, 49(3): 361
作者单位
摘要
长春理工大学 计算机科学技术学院, 吉林 长春 130022
光学成像分辨率受衍射极限、探测器尺寸等诸多因素限制。为了获得细节更丰富、纹理更清晰的超分辨率图像,本文提出了一种多尺度特征注意力融合残差网络。首先,使用一层卷积提取图像的浅层特征,之后,通过级联的多尺度特征提取单元提取多尺度特征,多尺度特征提取单元中引入通道注意力模块自适应地校正特征通道的权重,以提高对高频信息的关注度。将网络中的浅层特征和每个多尺度特征提取单元的输出作为全局特征融合重建的层次特征。最后,利用残差分支引入浅层特征和多级图像特征,重建出高分辨率图像。算法使用Charbonnier损失函数使训练更加稳定,收敛速度更快。在国际基准数据集上的对比实验表明:该模型的客观指标优于大多数最先进的方法。尤其在Set5数据集上,4倍重建结果的PSNR指标提升了0.39 dB,SSIM指标提升至0.8992,且算法主观视觉效果更好。
卷积神经网络 超分辨率重建 多尺度特征提取 残差学习 通道注意力机制 convolutional neural network super-resolution reconstruction multi-scale feature extraction residual learning channel attention mechanism 
中国光学
2023, 16(5): 1034
作者单位
摘要
1 中国科学技术大学 生物医学工程学院(苏州)生命科学与医学部, 安徽 合肥 230026
2 中国科学院 苏州生物医学工程技术研究所, 江苏 苏州 215163
针对结直肠镜图像分辨率偏低、纹理信息偏少和细节模糊等缺点,提出了一种基于残差注意力网络的图像超分辨率重建算法SMRAN,选取结直肠息肉内窥镜图像数据集PolypsSet中的部分图像作为原始数据进行实验。首先,使用卷积网络提取低分辨率图像的浅层特征;其次,设计Res-Sobel结构对图像边缘特征进行增强;然后,通过引入不同大小的卷积核,设计多尺度特征融合模块(Multi-Scale feature Extraction Block, MEB),自适应地提取不同尺度的特征,从而得到有效的图像信息,并通过残差注意力网络将Res-Sobel模块和多尺度特征融合模块MEB进行连接;最后,通过亚像素卷积层对图像进行重建,得到最终的高分辨率图像。在尺度因子为×4时,网络在测试集上的测试结果如下: 峰值信噪比PSNR为34.25 dB,结构相似性SSIM为0.8675。实验结果表明,与传统的双三次插值算法及常用的SRCNN、RCAN等深度学习算法相比,本文提出的SMRAN对结直肠内窥镜图像具有更好的超分辨率重建效果。
内窥镜图像 超分辨率重建 残差结构 注意力机制 多尺度特征融合 索贝尔算子 endoscopic image super-resolution reconstruction residual structure attention mechanism multi-scale feature extraction Sobel operator 
中国光学
2023, 16(5): 1022
作者单位
摘要
1 华北理工大学电气工程学院,河北 唐山 063210
2 唐山市金属构件产线智能化技术创新中心,河北 唐山 063210
3 唐山市半导体集成电路重点实验室,河北 唐山 063210
傅里叶叠层成像(FPM)受硬件和算法等因素的限制,成像的整体性能有待提高。为解决传统FPM技术成像速度慢、成像质量低的问题,融入深度学习的FPM图像重建方法得到广泛关注。基于此,提出一种基于超分辨率对抗生成网络的FPM模型,在原有网络基础上通过增加密集块连接实现全局特征融合并且使用一种加权损失函数提高图像重建质量。分辨率板图像重构结果表明,所提深度学习方法较传统方法重建效果显著、重建速度更快。
显微 计算成像 傅里叶叠层显微成像 对抗生成网络 超分辨率重建 深度学习 microscopy computational imaging Fourier ptychography microscopy generative adversarial network super-resolution reconstruction deep learning 
激光与光电子学进展
2023, 60(20): 2018001
温剑 1邵剑飞 1,*刘杰 2邵建龙 1[ ... ]叶榕 1
作者单位
摘要
1 昆明理工大学 信息工程与自动化学院,云南昆明650500
2 云南警官学院 云南警用无人系统创新研究院, 云南昆明6503
针对图像超分辨率重建过程中提取低分辨率特征效果较差,大量高频信息丢失导致的边缘模糊和伪影问题,提出了融合多维注意力机制与选择性特征融合作为图像特征提取模块的图像超分辨率重建方法。网络由若干个基本块和残差操作构建模型的特征提取结构,其核心是一种提取图像特征的异构组卷积块,该模块的对称组卷积块以并行的方式进行卷积提取不同通道间的内部信息特征并进行选择性特征融合,互补卷积块通过全维度动态卷积从空域、输入输出维度和核维度捕捉遗漏的上下文信息,对称组卷积块和互补卷积块连接后的特征采用特征增强残差块去除冗余造成干扰的无用信息。模型通过5种消融实验证明其设计的合理性,在Set5,Set14,BSDS100和Urban100测试集上与其他主流的超分辨率重建方法进行对比,峰值信噪比(PSNR)和结构相似性(SSIM)定量数据均有提升,尤其在放大因子为3的Set5数据集上比次优算法CARN-M均提升0.06 dB,结果表明提出模型具有更优的性能指标和更好的视觉效果。
超分辨率重建 多维注意力机制 特征融合 残差网络 super-resolution reconstruction multidimensional attention mechanism feature fusion residual network 
光学 精密工程
2023, 31(17): 2584
作者单位
摘要
上海海洋大学信息学院,上海 201306
快速而准确的水下图像超分辨率重建技术可以帮助水下航行器更好地感知水下场景,从而作出导航决策。基于此,提出一种轻量级的基于信息蒸馏机制的水下图像超分辨率重建算法(SRIDM)。该算法在普通残差网络的基础上,引入全局特征融合结构、信息蒸馏机制和空间注意力模块,进一步提高了模型的特征表达能力。通过模型消融实验,验证了每个模块的有效性并找到了最佳的模块组合和蒸馏速率。在USR-248测试集上的对比实验结果表明,通过所提算法恢复的图像不管是在主观视觉效果还是在客观评价质量上均优于其他对比算法,在放大因子为4时,其峰值信噪比和结构相似度分别达到了27.7640 dB和0.7640。另外,所提算法也是一种轻量化算法,在保持性能的同时大大降低了模型参数量和计算复杂度。
图像处理 超分辨率重建 轻量级 特征融合 信息蒸馏机制 空间注意力 image processing super-resolution reconstruction lightweight feature fusion information distillation mechanism spatial attention 
激光与光电子学进展
2023, 60(12): 1210017
作者单位
摘要
宁夏大学物理与电子电气工程学院,宁夏 银川 750021
为了获取包含更多高频感知信息与纹理细节信息的遥感重建图像,并解决超分辨率重建算法训练难和重建图像细节缺失的问题,提出一种融合多尺度感受野模块的生成对抗网络(GAN)遥感图像超分辨率重建算法。首先,使用多尺度卷积级联增强全局特征获取、去除GAN中的归一化层,提升网络训练效率去除伪影并降低计算复杂度;其次,利用多尺度感受野模块与密集残差模块作为生成网络的细节特征提取模块,提升网络重建质量获取更多细节纹理信息;最后,结合Charbonnier损失函数与全变分损失函数提升网络训练稳定性加速收敛。实验结果表明,所提算法在Kaggle、WHU-RS19、AID数据集上的平均检测结果较超分辨率GAN在峰值信噪比、结构相似性、特征相似性等方面分别高出约1.65 dB、约0.040(5.2%)、约0.010(1.1%)。
遥感 超分辨率重建 遥感图像 生成对抗网络 感受野网络 密集残差网络 remote sensing super-resolution reconstruction remote sensing image generative adversarial network receptive fields block residual dense block 
激光与光电子学进展
2023, 60(10): 1028010

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!