作者单位
摘要
1 沈阳化工大学 信息工程学院,辽宁 沈阳 110142
2 96901部队,北京 100094
合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标识别是SAR图像解译的重要应用。为提高SAR目标识别的稳健性,本文提出基于深度信念网络(Deep Belief Network,DBN)的属性散射中心匹配方法。属性散射中心参数特征丰富,能够很好地反映目标的局部散射特性。DBN发挥深度学习优势,可以实现测试样本与模板样本散射中心集的稳健匹配,并且能够较好地适应噪声干扰、部分缺失等情形。在构建的属性散射中心匹配关系的基础上,定义相似度度量准则。基于最大相似度的原则确定测试样本所属类别。实验依托MSTAR数据集开展,经验证,所提方法对于SAR目标识别问题具有良好的有效性和稳健性。
合成孔径雷达 目标识别 属性散射中心 深度信念网络 synthetic aperture radar target recognition attribute scattering center deep belief network 
液晶与显示
2023, 38(11): 1511
张欣 1,*乔继红 2,*张慧妍 2,3张雁 1[ ... ]许继平 2,3
作者单位
摘要
1 联想集团 神奇工场通讯技术有限公司,北京 100089
2 北京工商大学 计算机与人工智能学院,北京 100048
3 北京工商大学 中国轻工业工业互联网与大数据重点实验室,北京 100048
基于手机成像质量颜色评价的必要性,提出一种融合相机主观场景成像色彩和白平衡的自动评测方法(CIQA),以充分提取彩色图像相关特征并模拟人眼视觉感知特性来评价图像颜色。首先使用尺度不变特征变换(Scale-invariant feature transform,SIFT)与透射变换相结合的方法,标识主观图像中ColorChecker标准二十四色卡对应的位置;而后构建离差率最小二乘法模型,并采用专家赋权法和熵权法计算色彩还原和白平衡指标权重分配比例;最后,通过多指标权重值对TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution)进行改进,确定各方案与典型正负理想方案的接近程度,实现对智能手机成像质量颜色的优劣排序。对真实场景采集的图片进行实验,并与现有的两种决策方法进行对比验证。结果表明,所提方法能提高评价效率、节省人力,并可以获得与人眼主观判断一致性较好的评价结果。
目标识别 指标 离差率最小二乘法 颜色 智能手机 target recognition indicator deviation least square method color smart phone 
液晶与显示
2023, 38(11): 1490
作者单位
摘要
1 微米纳米加工技术全国重点实验室, 上海 200241
2 上海交通大学 微纳电子学系, 上海 200241
近年来仿生扑翼飞行器利用视觉系统自主飞行成为一个具有广泛前景的研究方向, 然而, 其有限的带载能力对视觉传感器的类型、尺寸和重量提出了严格要求。目前商用图像处理模块的尺寸和重量较大, 且需要回传图像信息至地面控制系统处理, 文章旨在设计一款轻量化机载单目视觉系统, 帮助微型仿生扑翼飞行器获取外界信息并实现智能自主的飞行。相比于其他图像处理模块, 此系统以国产高算力芯片K210为核心进行设计, 可脱离电脑端完成图像处理, 尺寸仅为2.2cm×2.3cm, 重量仅为3g, 内部兼容轻量化网络模型实现分类识别, 通过串口进行信息交互, 控制扑翼飞行器实现手势识别和目标追踪。
仿生飞行器 单目视觉系统 卷积神经网络 轻量化 目标识别 机载图像处理 串口通信 自主飞行 bionic aircraft monocular vision system convolution neural network lightweight target recognition onboard image processing serial communication autonomous flight 
半导体光电
2023, 44(2): 257
孙思宇 1,2丁红昌 1,2,*曹国华 1,2
作者单位
摘要
1 长春理工大学 机电工程学院,长春 130022
2 长春理工大学 重庆研究院,重庆 401135
为了解决“猫眼”目标在夜晚环境下难识别的问题,提出了一种基于归一化中心矩的轮廓匹配“猫眼”目标识别方法。首先利用中值滤波对图像进行去噪,采用固定阈值分割完成了对图像的分割,使得“猫眼”目标与部分背景分离,使用Roberts边缘检测提取出了所有物体的边缘,最后采取了基于归一化中心矩的轮廓匹配算法,该算法不受平移和放缩的影响,提取出了图像中的所有圆形目标,并利用面积判别识别了真实目标,对识别出的目标绘制最小外接圆,利用圆心坐标对其定位。通过对不同光照强度下的“猫眼”图像进行实验与对比,验证了该方法的可行性,并通过目标识别评价指标验证了该方法的有效性。实验结果表明,该方法的全局准确率可达92.1%,可以在夜晚环境不同光照强度下成功地对“猫眼”目标进行识别。
夜晚环境 “猫眼”效应 目标识别 轮廓匹配 归一化中心矩 night environment “cat’s eye” effect target recognition contour matching normalized central moment 
强激光与粒子束
2023, 35(6): 069002
作者单位
摘要
1 安徽工程大学电气工程学院,安徽 芜湖 241000
2 高端装备先进感知与智能控制教育部重点实验室,安徽 芜湖 241000
3 芜湖市固高自动化技术有限公司,安徽 芜湖 241000
针对视觉同步定位与建图算法在遮挡情况下易受到干扰而导致定位误差较大且闭环检测精度较低等问题,提出一种融合混合注意力实例分割的视觉同步定位与建图算法。该算法能够动态调整被遮挡物识别权重,在出现遮挡情况时提升对被遮挡物的特征提取与识别能力。同时采用概率去误匹配算法去除错误匹配点对,增加位姿求解及关键帧选取精度,从而更好地修正机器人位姿、提高系统构图的准确率。通过KITTI公开数据集和真实场景对所提算法进行测试,结果表明,所提算法在闭环准确率上与ORB-SLAM2算法相比约提高10.7%,平移误差约减小27.6%,体现了良好的构图能力。
遥感 同步定位与地图构建 注意力机制 实例分割 目标识别 闭环检测 remote sensing simultaneous localization and mapping attentional mechanism instance segmentation target recognition closed-loop detection 
激光与光电子学进展
2023, 60(10): 1028008
作者单位
摘要
西安邮电大学 通信与信息工程学院, 西安 710100
为了高效准确地滤掉云烟雾等悬浮粒子, 减少对激光成像引信工作的影响, 采用了改进的Harris+最小核值相似区域(SUSAN)角点检测算法与矩形度结合的目标识别方法。改进算法在原有Harris和SUSAN算法基础上, 利用8邻域模板标准差对目标像素点进行初次筛选获得候选角点, 经高斯滤波后, 利用改进的角点响应函数值进行二次筛选, 再通过非极大值抑制得到最终角点, 最后利用矩形度对目标与干扰进行二次区分。通过理论分析和实验验证可知, 95%的目标能被有效地识别出来。结果表明, 该方法能高效准确地区分目标与干扰, 同时满足实时性要求, 为激光成像引信抗干扰方面提供了一定的理论参考。
激光技术 目标识别 特征提取 Harris算法 最小核值相似区域算法 laser technique target recognition feature extraction Harris algorithm smallest univalue segment assimilating nucleus alg 
激光技术
2023, 47(2): 267
作者单位
摘要
重庆移通学院, 重庆 401520
针对合成孔径雷达(SAR)图像目标识别问题, 采用非线性相关信息熵(NCIE)进行多特征选取进而实现分类。基于混合高斯模型对 SAR图像提取的各类特征进行概率建模, 采用 KL散度评价不同特征之间的相似度。采用非线性相关信息熵评价不同特征组合的相关性, 根据最大熵值确定最优特征组合。对于选取的多类特征, 基于联合稀疏表示模型进行表征和分类。利用 MSTAR数据集对提出方法在标准操作条件和扩展操作条件下进行测试, 结果验证了其有效性。
合成孔径雷达 目标识别 非线性相关信息熵 联合稀疏表示 Synthetic Aperture Radar target recognition Nonlinear Correlation Information Entropy joint sparse representation 
太赫兹科学与电子信息学报
2023, 21(2): 183
侯义锋 1丁畅 2,3,4,*刘海 3Mandal Mrinal 4[ ... ]吴自库 5
作者单位
摘要
1 梧州学院电子与信息工程学院,广西 梧州 543001
2 桂林电子科技大学机电工程学院,广西 桂林 531004
3 中国矿业大学信息与控制工程学院,江苏 徐州 221116
4 阿尔伯塔大学电子与计算机工程系,阿尔伯塔 埃德蒙顿 T6G 1H9,加拿大
5 青岛农业大学理学与信息科学学院,山东 青岛 266109
海上红外目标识别在海事搜寻中发挥着重要的作用,针对逆光海况下出现的目标反向对比度特点及其目标淹没于背景的问题,结合其直方图呈现的局部尖峰特点,提出了修正灰度占比的新直方图均衡化并融合边缘信息的增强算法。该算法可以有效地提升目标区域的对比度,从而提升海上红外图像的质量。在海上红外目标识别与检测中,建立了目标与背景的多尺度“九宫格”搜索框,演化了局部对比度显著性量化的数学模型,实现了符合人眼视觉特性的红外目标的准确定位与检测。在海上红外图像增强测试中,所提算法可以使原图像的平均梯度提升两倍以上,使局部对比度增益因子提升两倍以上。在目标识别的算法测试中,所提多尺度局部对比度目标检测算法可以使目标检测率达到99%以上。
测量 红外成像 海上红外目标识别 红外图像增强 直方图变换 局部对比度显著性 逆光海况 measurement infrared imaging maritime infrared target recognition infrared image enhancement histogram transformation local contrast saliency backlight maritime condition 
光学学报
2023, 43(6): 0612003
李想 1,2特日根 1,2,*仪锋 1,2徐国成 3
作者单位
摘要
1 长光卫星技术股份有限公司,吉林长春30000
2 吉林省卫星遥感应用技术重点实验室,吉林长春130000
3 吉林大学 材料科学与工程学院,吉林长春10000
原油作为一种重要的战略物资,在我国经济和**等多个领域均起到重要作用。本文提出一种基于深度学习的目标检测模型TCS-YOLO(Transformer-CBAM-SIoU YOLO),该模型在YOLOv5的基础上进行优化,同时基于吉林一号光学遥感卫星影像数据集进行实验,对全球范围内的储油罐进行识别与分类。优化内容包括:添加基于Transformer架构的C3TR层对网络进行优化;使用CBAM(Convolutional Block Attention Module)在网络层中添加注意力机制;使用SIoU(Scale-Sensitive Intersection over Union) loss代替CIoU(Complete Intersection over Union) loss作为定位损失函数。实验结果表明:与YOLOv5相比,TCS-YOLO的模型复杂度(Giga Floating Point of Operations,GFLOPs)平均减少3.13%,模型参数量(Parameters)平均减少0.88%,推理速度(Inference Speed)平均降低0.2 ms,mAP0.5(mean Average Precision)平均提升0.2%,mAP0.5∶0.95平均提升1.26%。与此同时,将TCS-YOLO模型与通用目标识别模型YOLOv3,YOLOv4,YOLOv5和Swin Transformer进行对比实验,TCS-YOLO均体现出了更高效的特点。TCS-YOLO模型对全球储油罐的目标识别具有通用可行性,可为遥感数据在能源期货领域提供技术参考。
计算机视觉 目标检测 储油罐检测 YOLO computer vision target recognition oil storage tank detection YOLO 
光学 精密工程
2023, 31(2): 246
作者单位
摘要
电子科技大学成都学院,成都 611000
针对合成孔径雷达(SAR)目标识别问题, 提出结合多特征联合表征和自适应加权的方法。分别采用主成分分析(PCA)、单演信号以及Zernike矩特征描述原始SAR图像, 获得3个对应的特征矢量。基于联合稀疏表示模型对3类特征进行联合表征。针对不同特征条件下的重构误差矢量, 采用自适应加权算法进行融合处理, 即在线性融合的框架下自适应获得权值, 达到良好的决策融合效果。最终, 根据融合后的误差对目标类别进行判定。实验基于MSTAR数据集开展, 针对10类目标识别问题分别在标准操作条件、噪声干扰和部分遮挡条件下进行测试, 结果验证了方法的有效性。
合成孔径雷达 目标识别 多特征 联合稀疏表示 自适应加权 synthetic aperture radar target recognition multiple features joint sparse representation adaptive weighting 
电光与控制
2022, 29(11): 97

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!