Chinese Optics Letters
Search

2020, 18(4) Column

MORE

Chinese Optics Letters 第18卷 第4期

Author Affiliations
Abstract
CREOL, The College of Optics & Photonics, University of Central Florida, Orlando, FL 32816, USA
Space-division multiplexing (SDM) has attracted significant attention in recent years because larger transmission capacity is enabled by more degrees of freedom (DOFs) in few-mode fibers (FMFs) compared with single-mode fibers (SMFs). To transmit independent information on spatial modes without or with minor digital signal processing (DSP), weakly-coupled FMFs are preferred in various applications. Several cases with different use of spatial DOFs in weakly-coupled FMFs are demonstrated in this work, including single-mode or mode-group-multiplexed transmission, and spatial DOFs combined with time or frequency DOF to improve the system performance.
multiplexing nonlinear optics fibers radio frequency photonics fiber optics links and subsystems few-mode fibers 
Chinese Optics Letters
2020, 18(4): 040601
Author Affiliations
Abstract
Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
We propose and analyze a silicon hybrid plasmonic polarization splitter-rotator with an ultra-short footprint using an asymmetric bent directional coupler on a silicon-on-insulator platform. Benefitting from the large birefringence induced by the bent structure and plasmonic effect, the cross-polarization coupling length is only 5.21 μm. The transverse magnetic to transverse electric polarization conversion efficiency is over 99.9%, with an extinction ratio of 20.6 dB (32.5 dB) for the transverse magnetic (transverse electric) mode at 1.55 μm. Furthermore, the polarization conversion efficiency is higher than 90% while maintaining cross talk below ?19 dB within the bandwidth of 80 nm.
polarization sensitive devices surface plasmons integrated optics devices 
Chinese Optics Letters
2020, 18(4): 041301
Author Affiliations
Abstract
1 Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
2 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
3 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Electronic Science and Technology and College of Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
A new disordered crystal Nd:SrAl12O19 (Nd:SRA) with an Nd3+ doping concentration of 5% was successfully grown using the Czochralski method. A diode-pumped Nd:SRA Q-switched laser operating at 1049 nm was demonstrated for the first time, to the best of our knowledge. Based on an MXene Ti3C2Tx sheet, a high repetition rate of 201 kHz and a Q-switched pulse width of 346 ns were obtained when the absorbed pump power was 2.8 W. The peak power and single pulse energy were 1.87 W and 0.65 μJ, respectively.
Nd:SrAl12O19 crystal MXene Ti3C2Tx disordered crystal passively Q-switched lasers 
Chinese Optics Letters
2020, 18(4): 041401
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
A deep convolutional neural network is employed to simultaneously measure the beam-pointing and phase difference of sub-beams from a single far-field interference fringe for coherent beam combining systems. The amplitudes of sub-beams in the measurement path are modulated in order to prevent measuring mistakes caused by the symmetry of beam-pointing. This method is able to measure beam-pointing and phase difference with an RMS accuracy of about 0.2 μrad and λ/250, respectively, in a two-beam coherent beam combining system.
coherent beam combining pattern recognition deep learning 
Chinese Optics Letters
2020, 18(4): 041402
Author Affiliations
Abstract
1 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
2 Key Laboratory of Functional Crystal Materials and Device (Shandong University), Ministry of Education, Jinan 250100, China
For the first time, a group-VI single element nanomaterial was used as the optical saturable absorber (SA) to generate laser pulses. With two-dimensional (2D) tellurene as a passive Q-switch, 1.06 μm and 1.3 μm pulse laser operations were realized from a diode-pumped Nd:YAG crystal. The shortest pulse widths were 98 ns and 178 ns, and the highest peak powers were 2.68 W and 2.45 W, respectively. Our research determines that tellurene is an excellent SA material in the near-infrared region.
tellurene nanosheets absorber graphene passive Q-switching 
Chinese Optics Letters
2020, 18(4): 041403
Author Affiliations
Abstract
1 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
The Laguerre–Gaussian (LG) mode beam has very important applications in many research fields. Here, the Theon sieve is first introduced into the laser resonator to generate petal-like laser beams by coherently superimposing two high-order LG modes. The effectiveness was verified by GLAD software. The petal-like laser beam is derived from the light field redistribution and coherent superposition caused by the diffraction effect of the Theon sieve. The relationship between the order of the petal-like laser and the cavity structures has also been investigated in detail. Light field operation in the laser cavity greatly simplifies the optical structure and is more beneficial to optical diagnostics and imaging.
generation super-high order petal-like laser beam Theon sieve 
Chinese Optics Letters
2020, 18(4): 041404
Author Affiliations
Abstract
1 SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2 College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
In recent years, multi-wavelength fiber lasers play a significant role in plenty of fields, ranging from optical communications to mechanical processing and laser biomedicine, owing to their high beam quality, low cost, and excellent heat dissipation properties. Benefitting from increasing maturity of optical elements, the multi-wavelength fiber laser has made rapid developments. In this review, we summarize and analyze diverse implementation methods covering continuous wave and pulsed fiber lasers at room temperature conditions: inserting an optical filter device and intensity-dependent loss structure in the resonant cavity, and applying ultrafast nonlinear optical response of materials and a dual-cavity structure. Finally, future challenges and perspectives of the multi-wavelength fiber laser are discussed and addressed.
multi-wavelength fiber laser optical filter nonlinear polarization rotation nonlinear amplification loop mirror 2D materials 
Chinese Optics Letters
2020, 18(4): 041405
Author Affiliations
Abstract
1 Jinling College, Nanjing University, Nanjing 210089, China
2 Nanjing Drum Tower Hospital, Nanjing 210008, China
3 School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
4 Institution of Acoustics, Tongji University, Shanghai 200092, China
The diagnosis of osteoporosis is eventually converted to the measurement of bone mineral density (BMD) in clinical trials. Since our previous work had proved the ability of using photoacoustic spectral analysis (PASA) to efficiently detect osteoporosis, in this contribution, we proposed a fully connected multi-layer deep neural network combined with PASA to semi-quantify BMD values corresponding to varying degrees of bone loss and to further evaluate the degree of osteoporosis. Experiments were carried out on swine femur heads, and the performance of our proposed method is satisfying for future clinical screening.
photoacoustics osteoporosis neural network 
Chinese Optics Letters
2020, 18(4): 041701
Author Affiliations
Abstract
School of Physics and Opto-Electronics Engineering, Ludong University, Yantai 264025, China
We propose a metalens for coaxial double wavelength focusing. One focusing spot is a circular solid spot, and the other focusing spot is a doughnut-shaped spot that is circling the solid spot. The designed metalens was composed of a meta-molecular nanostructured cell array. Each meta-molecular nanostructured cell was divided into four squares. Two slots with exactly the same shape, but usually with the rotation angle measured clockwise from the positive x axis, are etched into the gold film in two diagonally connected squares. Another two slots with the same shape but with the rotation angle measured counter-clockwise from the positive x axis are etched into another two diagonally connected squares in the same cell. The lasers with two different wavelengths are transformed into right-handed and left-handed circularly polarized beams, respectively. The two sets of slots with different azimuthal rotations modulated the phases of incident right-handed and left-handed circularly polarized beams independently. The numerical simulation with finite-difference time-domain (FDTD) software was carried out, and the experimental verification was also implemented. Both the experimental result and the numerical simulation agree well with the theoretical design.
metalens coaxial focusing double wavelengths 
Chinese Optics Letters
2020, 18(4): 042401
Author Affiliations
Abstract
State Key Laboratory of Advanced Optical Communication Systems and Networks, Intelligent Microwave Lightwave Integration Innovation Center (iMLic), Shanghai Institute for Advanced Communication and Data Science, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
We demonstrate a novel multifunctional radar receiver scheme based on photonic parametric sampling. The working principle of photonic parametric sampling based on four-wave mixing (FWM) process is presented. To experimentally verify the multifunctional feasibility, the scheme is individually implemented to carry out a four-channel phased array radar reception and a dual-band radar reception.
microwave photonics radar receiver photonic parametric sampling four-wave mixing 
Chinese Optics Letters
2020, 18(4): 042501
Author Affiliations
Abstract
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
In this Letter, vortex phase and sinusoidal phase modulations of Hermite–Gaussian beams are studied theoretically and experimentally. The coding method of the experiment is introduced in detail, and the evolution law of focus under different beam order (m, n) and topological charge (l) is given. In order to verify the accuracy of the generation experiment, the optical field distribution under sinusoidal vortex modulation is analyzed deeply. The relevant analysis and methods provided in this Letter have certain practical significance for the development of laser mode analysis, optical communication, and other fields.
Hermite–Gaussian beams phase modulation sinusoidal vortex phase modulation spatial light modulator focus mode 
Chinese Optics Letters
2020, 18(4): 042601
Author Affiliations
Abstract
1 Key Laboratory for Quantum Optics and Center for Cold Atom Physics of CAS, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Shanghai Key Laboratory of Aerospace Intelligent Control Technology, Shanghai Aerospace Control Technology Institute, Shanghai 201800, China
We investigate the influence of the source’s energy fluctuation on both computational ghost imaging and computational ghost imaging via sparsity constraint, and if the reconstruction quality will decrease with the increase of the source’s energy fluctuation. In order to overcome the problem of image degradation, a correction approach against the source’s energy fluctuation is proposed by recording the source’s fluctuation with a monitor before modulation and correcting the echo signal or the intensity of computed reference light field with the data recorded by the monitor. Both the numerical simulation and experimental results demonstrate that computational ghost imaging via sparsity constraint can be enhanced by correcting the echo signal or the intensity of computed reference light field, while only correcting the echo signal is valid for computational ghost imaging.
ghost imaging speckle image reconstruction 
Chinese Optics Letters
2020, 18(4): 042602
Author Affiliations
Abstract
Department of Electronic Engineering, Kyungsung University, Nam-Gu, Busan 48434, South Korea
We experimentally demonstrated optical wireless power transfer (OWPT) using a near-infrared laser diode (LD) as the optical power transmitter. We considered a photovoltaic (PV) cell and a photodiode (PD) as the optical power receivers. We investigated the characteristics of the LD, PD, and PV cell in order to determine the optimum operating condition from the viewpoint of transfer efficiency. We also experimentally demonstrated a whole system optimization process to maximize the DC-to-DC transfer efficiency of the OWPT. Our experimental results showed that the optimization process can improve the OWPT efficiency by up to 48%.
optical wireless power transfer optical wireless power transmission 
Chinese Optics Letters
2020, 18(4): 042603
Author Affiliations
Abstract
1 Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Imaging through scattering media via speckle autocorrelation is a popular method based on the optical memory effect. However, it fails if the amount of valid information acquired is insufficient due to a limited sensor size. In this Letter, we reveal a relationship between the detector and object sizes for the minimum requirement to ensure image reconstruction by defining a sampling ratio R, and propose a method to enhance the image quality at a small R by capturing multiple frames of speckle patterns and piecing them together. This method will be helpful in expanding applications of speckle autocorrelation to remote sensing, underwater probing, and so on.
speckle correlation dynamic scattering media remote sensing 
Chinese Optics Letters
2020, 18(4): 042604
Author Affiliations
Abstract
1 Engineering Research Centre of Optical Instrument and System, Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
3 Sino-England International College, University of Shanghai for Science and Technology, Shanghai 200093, China
This study provides a rapid method for quantification of mineral oil in rapeseed oil using near-infrared spectroscopy. The data were processed by direct orthogonal signal correction (DOSC), successive projections algorithm (SPA), partial least squares, and principal component regression (PCR). Good correlation coefficients (R) of 0.998 and root-mean-squared error (RMSE) of 0.005 were obtained, and the DOSC-SPA-PCR model was identified as the optimal method. A satisfactory accuracy with R and RMSE of prediction by DOSC-SPA-PCR of 0.990 and 0.006, was obtained. The results demonstrate that the proposed methodology is a promising method for the rapid quantitative detection of mineral oil in vegetable oil.
near-infrared spectroscopy mineral oil oil quality control DOSC-SPA-PCR 
Chinese Optics Letters
2020, 18(4): 043001
Author Affiliations
Abstract
1 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
2 Nanjing Astronomical Instruments Co., Ltd., Chinese Academy of Sciences, Nanjing 210000, China
The photoelectric properties of conductive films are improved by doping Ag on aluminum-doped zinc oxide (AZO) films by laser induced forward transfer (LIFT). Firstly, the picosecond laser induced transfer mechanism of Ag films was revealed by numerical simulation; then, different-thickness Ag films were deposited on the AZO films by picosecond LIFT. When the film thickness is 30 nm and 50 nm, we have successfully obtained some Ag-AZO films with better optoelectronic properties by adjusting the laser parameters.
LIFT surface treatment AZO film Ag-nanoparticles optoelectronic property 
Chinese Optics Letters
2020, 18(4): 043101