Chinese Optics Letters
Search

2023, 21(1) Column

MORE

Chinese Optics Letters 第21卷 第1期

Chinese Optics Letters
2023, 21(1): 010001
Author Affiliations
Abstract
College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
Spatial terahertz wave modulators that can arbitrarily tailor the electromagnetic wavefront are in high demand in nondestructive inspections and high-capacity wireless communications. Here, we propose a liquid crystal integrated metadevice. It modulates the terahertz wave based on the adjustable electromagnetically induced transparency analog when spatially changing the environmental refractive index. The functions of the device can be arbitrarily programmed via photo-reorienting the directors of liquid crystals with a digital micromirror device-based exposing system. The thin liquid crystal layer can be further driven by an electric field, and thus the function can be rapidly switched. Amplitude modulation and the lens effect are demonstrated with modulation depths over 50% at 0.94 THz.
terahertz spatial terahertz wave modulator metasurface 
Chinese Optics Letters
2023, 21(1): 010002
Author Affiliations
Abstract
Anhui Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
The temporal coupled-mode theory (TCMT) has made significant progress in recent years, and is widely applied in explaining a variety of optical phenomena. In this paper, the optical characteristics of the metasurface composed of nano-bars and nano-rings are simulated. The simulation results are well explained by TCMT under the coupled basis vector. However, when the structural asymmetry is large, the fitting of results shows that the total radiation loss is not conservative, in contradiction to the requirement of traditional TCMT. We solved this inconsistency by introducing the propagation phase into the near-field coupling term of TCMT. The studies show that, unlike the local mode near the exceptional point which corresponds to the radiation loss of the bright mode, the global mode near the diabolic point is closely related to the propagation phase. Furthermore, the structure near the diabolic point shows characteristic cross-coupling with the change of period. This study proposes a new theoretical framework for comprehending the interaction of light and matter and offers some guiding implications for the application of TCMT to a variety of related domains.
temporal coupled-mode theory exception point diabolic point propagation phase 
Chinese Optics Letters
2023, 21(1): 010003
Author Affiliations
Abstract
State Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
The lateral geometry and material property of plasmonic nanostructures are critical parameters for tailoring their optical resonance for sensing applications. While lateral geometry can be easily observed by a scanning electron microscope or an atomic force microscope, characterizing materials properties of plasmonic devices is not straightforward and requires delicate examination of material composition, cross-sectional thickness, and refractive index. In this study, a deep neural network is adopted to characterize these parameters of unknown plasmonic nanostructures through simple transmission spectra. The network architecture is established based on simulated data to achieve accurate identification of both geometric and material parameters. We then demonstrate that the network training by a mixture of simulated and experimental data can result in correct material property recognition. Our work may indicate a simple and intelligent characterization approach to plasmonic nanostructures by spectroscopic techniques.
plasmonics soft nanoimprint lithography deep neural network nanostructure characterization 
Chinese Optics Letters
2023, 21(1): 010004
Author Affiliations
Abstract
Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering (EME), Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
The two-photon state with spatial entanglement is an essential resource for testing fundamental laws of quantum mechanics and various quantum applications. Its creation typically relies on spontaneous parametric downconversion in bulky nonlinear crystals where the tunability of spatial entanglement is limited. Here, we predict that ultrathin nonlinear lithium niobate metasurfaces can generate and diversely tune spatially entangled photon pairs. The spatial properties of photons including the emission pattern, rate, and degree of spatial entanglement are analyzed theoretically with the coupled mode theory and Schmidt decomposition method. We show that by leveraging the strong angular dispersion of the metasurface, the degree of spatial entanglement quantified by the Schmidt number can be decreased or increased by changing the pump laser wavelength and a Gaussian beam size. This flexibility can facilitate diverse quantum applications of entangled photon states generated from nonlinear metasurfaces.
spontaneous parametric downconversion metasurface spatial entanglement 
Chinese Optics Letters
2023, 21(1): 010005
Author Affiliations
Abstract
1 Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518000, China
2 College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518000, China
3 Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
4 Department of Physics, Forman Christian College-University, Lahore 54600, Pakistan
Metasurfaces, two-dimensional (2D) or quasi-2D arrays of dielectric or metallic meta-atoms, offer a compact and novel platform to manipulate the amplitude, phase, and polarization of incoming wavefronts in a desired manner by engineering the geometry of meta-atoms. In polarization control, spin-insensitive metasurfaces have attracted significant attention due to the robustness of circular polarization against the beam misalignment and multi-path effects. Till now, several efforts have been made to realize polarization-insensitive metasurfaces for circularly polarized (CP) wavefront manipulation; however, these metasurfaces only consider the cross-polarization channels and keep the co-polarization channels abandoned. Such metasurfaces cannot be considered truly spin-insensitive, as one has to carefully choose the analyzer at output. Here, by combining the polarization-insensitive geometric phase and engineered propagation phase, we propose a spin-insensitive design principle based on metasurfaces that can perform identical functionality (on co- and cross-polarization channels) irrespective of the handedness of incident/transmitted light. As a proof of concept, we design and numerically realize two types of spin-insensitive wavefront engineering devices: (1) spin-insensitive meta-hologram and (2) spin-insensitive beam deflector with power splitting functionality. The proposed work is expected to open up new avenues for developing spin-independent metasurfaces-based devices.
metasurface spin-insensitivity meta-hologram beam splitter 
Chinese Optics Letters
2023, 21(1): 010006
Author Affiliations
Abstract
1 College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2 National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
Electrically driven structural patterns in liquid crystals (LCs) have attracted considerable attention due to their electro-optical applications. Here, we disclose various appealing reconfigurable LC microstructures in a dual frequency nematic LC (DFNLC) owing to the electroconvection-induced distortion of the LC director, including one-dimensional rolls, chevron pattern, two-dimensional grids, and unstable chaos. These patterns can be switched among each other, and the lattice constants are modulated by tuning the amplitude and frequency of the applied electric field. The electrically switchable self-assembled microstructures and their beam steering capabilities thus provide a feasible way to tune the functions of DFNLC-based optical devices.
dual frequency liquid crystals pattern formation gratings diffractions 
Chinese Optics Letters
2023, 21(1): 010501
Author Affiliations
Abstract
College of Engineering and Applied Sciences, , Nanjing 210093, China
In this study, an optical fiber-based magnetically-tuned graphene mechanical resonator (GMR) is demonstrated by integrating superparamagnetic iron oxide nanoparticles on the graphene membrane. The resonance frequency shift is achieved by tuning the tension of the graphene membrane with a magnetic field. A resonance frequency tunability of 23 kHz using a 100 mT magnetic field is achieved. The device provides a new way to tune a GMR with a non-contact force. It could also be used for weak magnetic field detection in the future with further improvements in sensitivity.
optical fiber graphene mechanical resonator magnetically tuned resonator 
Chinese Optics Letters
2023, 21(1): 010601
Author Affiliations
Abstract
Grünberg Research Centre, College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
To date, fluorescence imaging systems have all relied on at least one beam splitter (BS) to ensure the separation of excitation light and fluorescence. Here, we reported SiO2/TiO2 multi-layer long pass filter integrated GaN LED. It is considered as the potential source for imaging systems. Experimental results indicate that the GaN LED shows blue emission peaked at 470.3 nm and can be used to excite dye materials. Integrating with a long pass filter (550 nm), the light source can be used to establish a real-time fluorescence detection for dyes that emit light above 550 nm. More interestingly, with this source, a real-time imaging system with signature words written with the dyes, such as ‘N J U P T’, can be converted into CCD images. This work may lead to a new strategy for integrating light sources and BS mirrors to build mini and smart fluorescence imaging systems.
GaN LED self-filtering illumination source fluorescence imaging 
Chinese Optics Letters
2023, 21(1): 011101
Author Affiliations
Abstract
1 College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
2 State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter, Tsinghua University, Beijing 100084, China
Single-pixel imaging can reconstruct the image of the object when the light traveling from the object to the detector is scattered or distorted. Most single-pixel imaging methods only obtain distribution of transmittance or reflectivity of the object. Some methods can obtain extra information, such as color and polarization information. However, there is no method that can get the vibration information when the object is vibrating during the measurement. Vibration information is very important, because unexpected vibration often means the occurrence of abnormal conditions. In this Letter, we introduce a method to obtain vibration information with the frequency modulation single-pixel imaging method. This method uses a light source with a special pattern to illuminate the object and analyzes the frequency of the total light intensity signal transmitted or reflected by the object. Compared to other single-pixel imaging methods, frequency modulation single-pixel imaging can obtain vibration information and maintain high signal-to-noise ratio and has potential on finding out hidden facilities under construction or instruments in work.
single-pixel imaging frequency modulation vibration measurement 
Chinese Optics Letters
2023, 21(1): 011102
Haobin Lin 1,2,3Ce Feng 1,2,3Yang Dong 1,2,3Wang Jiang 1,2,3[ ... ]Fangwen Sun 1,2,3
Author Affiliations
Abstract
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
4 National Key Laboratory of ASIC, Hebei Semiconductor Research Institute, Shijiazhuang 050051, China
Nitrogen-vacancy color centers can perform highly sensitive and spatially resolved quantum measurements of physical quantities such as magnetic field, temperature, and pressure. Meanwhile, sensing so many variables at the same time often introduces additional noise, causing a reduced accuracy. Here, a dual-microwave time-division multiplexing protocol is used in conjunction with a lock-in amplifier in order to decouple temperature from the magnetic field and vice versa. In this protocol, dual-frequency driving and frequency modulation are used to measure the magnetic and temperature field simultaneously in real time. The sensitivity of our system is about 3.4 nT/Hz and 1.3 mK/Hz, respectively. Our detection protocol not only enables multifunctional quantum sensing, but also extends more practical applications.
quantum sensing temperature measurement magnetic field measurement 
Chinese Optics Letters
2023, 21(1): 011201
Author Affiliations
Abstract
1 State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
2 Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University, Tianjin 300387, China
3 College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
Studies on the kinetics of gas-phase chemical reactions currently rely on calculations or simulations and lack simple, fast, and accurate direct measurement methods. We developed a tunable laser molecular absorption spectroscopy measurement system to achieve direct measurements of such reactions by using wavelength modulated spectroscopy and performed online measurements and diagnostics of molecular concentration, reaction temperature, and pressure change during the redox reaction of ozone with nitrogen oxides (NOx) with 0.1 s temporal resolution. This study provides a promising diagnostic tool for studying gas-phase chemical reaction kinetics.
optical sensing wavelength modulated spectroscopy reaction kinetics nitrogen oxides 
Chinese Optics Letters
2023, 21(1): 011202
Han Ye 1,2,*Qin Han 1,2,3Shuai Wang 1Feng Xiao 1,4[ ... ]Liyan Geng 1
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
4 College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
A quadrature phase-shift keying (QPSK) coherent photodetector chip consisting of a 4×4 multimode interference 90° optical hybrid and a four-channel evanescent photodetector array is designed and fabricated with its photo-response in the L-band characterized. The metal organic chemical vapor deposition regrowth method is adopted to realize active–passive monolithic integration. The chip exhibits a low dark current below 100 nA for each photodetector in the array, a low excess loss of 0.85 dB, a common mode ratio rejection better than 13.6 dB, and a phase deviation within ±10° over the 40 nm wavelength span.
hybrid photodetectors monolithic integration photo-response 
Chinese Optics Letters
2023, 21(1): 011301
Author Affiliations
Abstract
1 Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
A 222 nm all-solid-state far-ultraviolet C (UVC) pulse laser system based on an optical parametric oscillator (OPO) and second-harmonic generation (SHG) using β-Ba2BO4 (BBO) crystals was demonstrated. Pumped by a Nd:Y3Al5O12 laser with a repetition rate of 100 Hz at 355 nm, the maximum signal laser pulse energy of 1.22 mJ at 444 nm wavelength was obtained from the BBO-OPO system, corresponding to a conversion efficiency of 27.9%. The maximum output pulse energy of 164.9 µJ at the 222 nm wavelength was successfully achieved, corresponding to an SHG conversion efficiency of 16.2%. Moreover, the tunable output wavelength of UVC light from 210 nm to 252.5 nm was achieved.
all-solid-state pulse laser UVC disinfection optical parametric oscillator second-harmonic generation 
Chinese Optics Letters
2023, 21(1): 011401
Wenfu Yu 1,2Xuyi Zhao 1,2Shixian Han 1,2Antian Du 3[ ... ]Qian Gong 1,2,*
Author Affiliations
Abstract
1 Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
We report the InAs/GaAs quantum dot laterally coupled distributed feedback (LC-DFB) lasers operating at room temperature in the wavelength range of 1.31 µm. First-order chromium Bragg gratings were fabricated alongside the ridge waveguide to obtain the maximum coupling coefficient with the optical field. Stable continuous-wave single-frequency operation has been achieved with output power above 5 mW/facet and side mode suppression ratio exceeding 52 dB. Moreover, a single chip integrating three LC-DFB lasers was tentatively explored. The three LC-DFB lasers on the chip can operate in single mode at room temperature, covering the wavelength span of 35.6 nm.
InAs quantum dot laterally coupled distributed feedback laser 
Chinese Optics Letters
2023, 21(1): 011402
Author Affiliations
Abstract
1 Key Laboratory of Intelligent Optical Sensing and Manipulation of the Ministry of Education & Nanjing University-Tongding Joint Lab for Large-scale Photonic Integrated Circuits & National Laboratory of Solid-State Microstructures & College of Engineering and Applied Science & Institute of Optical Communication Engineering, Nanjing University, Nanjing 210093, China
2 Department of Photonics and Institute of Electro-Optical Engineering, Taiwan Sun Yat-sen University, Kaohsiung 80424, China
In this Letter, we proposed and experimentally demonstrated a directly modulated tunable laser based on the multi-wavelength distributed feedback (DFB) laser array. The lasers are placed in series to avoid the usage of an optical combiner and additional power loss. A three-section design is utilized to reduce the interference from other lasers and improve the electro-optic response bandwidth. Besides, the reconstruction-equivalent-chirp technique is used to simplify the grating fabrication and precisely control the grating phase. We realized 12 channels with 100 GHz spacing with high side mode suppression ratios of above 50 dB. The output power of all the channels is above 14 mW. The 3 dB electro-optic bandwidth is above 20 GHz at a bias current of 100 mA for all four lasers. A 25 Gb/s data transmission over a standard single-mode fiber of up to 10 km is demonstrated for all 12 channels, and 50 Gb/s data per wavelength is obtained through the four-level pulse amplitude modulation. The proposed directly modulated tunable in-series DFB laser array shows the potential for a compact and low-cost light source for wavelength division multiplexing (WDM) systems, such as next-generation front-haul networks and passive optical networks.
tunable laser directly modulated laser laser array wavelength division multiplexing 
Chinese Optics Letters
2023, 21(1): 011403
Ning Wei 1,2Xiaobo Li 1,2Jiajing He 1,2Yongtao Fan 1,2[ ... ]Jun Wang 1,2,4,5,*
Author Affiliations
Abstract
1 Laboratory of Micro-Nano Optoelectronic Materials and Devices, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
4 CAS Center for Excellence in Ultra-intense Laser Science (CEULS), Shanghai 201800, China
5 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
The idea of a slot waveguide amplifier based on erbium-doped tellurite glass is first theoretically discussed in this work. Choosing the horizontal slot for low propagation loss, the TM mode profile compressed in the insertion layer was simulated, and the gain characteristics of the slot waveguide amplifier were calculated. Combining the capacity to confine light locally and the merits of tellurite glass as an emission host, this optimized amplifier shows enhanced interactions between the electric field and erbium ions and achieves a net gain of 15.21 dB for the 0.01 mW input light at 1530 nm, implying great promise of a high-performance device.
guided waves optical amplifiers rare-earth-doped materials 
Chinese Optics Letters
2023, 21(1): 011404
Author Affiliations
Abstract
1 Center for Optics Research and Engineering, Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, China
2 School of Information Science and Engineering, Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao 266237, China
Based on the Nd-doped single-mode fiber as the gain medium, an all-fiber 12th harmonic mode-locked (HML) laser operating at the 0.9 µm waveband was obtained for the first time, to the best of our knowledge. A mandrel with a diameter of 10 mm was employed to introduce bending losses to suppress mode competition at 1.06 µm, which resulted in a suppression ratio of up to 54 dB. The 1st–12th order HML pulses with the tunable repetition rate of 494.62 kHz–5.94 MHz were obtained in the mode-locked laser with a center wavelength of 904 nm. In addition, the laser has an extremely low threshold pump power of 88 mW. To the best of our knowledge, this is the first time that an HML pulse has been achieved in a 0.9 µm Nd-doped single-mode all-fiber mode-locked laser with the advantages of low cost, simple structure, and compactness, which could be an ideal light source for two-photon microscopy.
Nd-doped fiber laser harmonic mode-locking bending loss nonlinear polarization rotation low repetition rate 
Chinese Optics Letters
2023, 21(1): 011405
Author Affiliations
Abstract
1 Key Laboratory of Intelligent Optical Sensing and Manipulation of the Ministry of Education, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Institute of Optical Communication Engineering, and Nanjing University-Tongding Joint Laboratory for Large-Scale Photonic Integrated Circuits, Nanjing University, Nanjing 210023, China
2 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
3 School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
A wideband wavelength-tunable 4×5 distributed feedback (DFB) semiconductor laser array based on the reconstruction-equivalent-chirp (REC) technique using a simple tuning scheme is demonstrated. It consists of 20 DFB lasers with 4×5 matrix interleaving distributions, two-level cascaded Y-branch optical combiners, and one active semiconductor optical amplifier (SOA), all in-series integrated on one chip. Unlike the traditional thermal-electric cooler (TEC)-based wavelength-tuning scheme, the tunable 4×5 REC-DFB laser array achieves a faster and broader continuous wavelength-tuning range using TaN thin-film heaters integrated on the AlN submount. By changing the injection current of the TaN resistor from 0 to 190 mA, the proposed tunable laser achieves a wavelength-tuning range of 2.5 nm per channel and a total tuning of over 50 nm. This study opens up new avenues for realizing cost-effective and wide-tuning-range semiconductor lasers.
distributed feedback laser array reconstruction-equivalent-chirp technique tunable laser thin-film heater integrated on the submount wide tuning range 
Chinese Optics Letters
2023, 21(1): 011406
Author Affiliations
Abstract
1 College of Electronic Information Engineering, Shenzhen University, Shenzhen 518060, China
2 Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen 518118, China
Swept source optical coherence tomography (SS-OCT) is a new noninvasive technique for assessing tissue. Although it has advantages, such as being label-free, noninvasive, and with high resolution, it also has drawbacks: there has been no in-depth research into identifying the driving of swept source. Based on preliminary research, we demonstrate a novel driving modulation method of a fiber Fabry–Perot tunable filter ranging phase adjustable as a tool for making bandwidth compensation of a swept laser source. This novel method is analyzed in detail; a swept laser source with a sweep rate of 100.5 kHz over a range of 152.25 nm and at a center wavelength of 1335.45 nm is demonstrated.
swept laser source optical design techniques ring lasers laser applications 
Chinese Optics Letters
2023, 21(1): 011407
Yanjiao Guan 1,2Ruixuan Sun 1,2Ning Zhuo 1,*Xiyu Lu 1,2[ ... ]Fengqi Liu 1,2,3
Author Affiliations
Abstract
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
We report on the design and fabrication of a dual-wavelength switchable quantum cascade laser (QCL) by optimizing the design of a homogeneous active region and combining superposed distributed feedback gratings. Coaxial, single-mode emissions at two different wavelengths were achieved only through adjusting the bias voltage. Room temperature continuous-wave operation with output powers of above 30 mW and 75 mW was realized for single-mode emission at 7.61 µm and 7.06 µm, respectively. The simplified fabrication process and easy wavelength control of our designed dual-wavelength QCL make it very attractive for developing miniature multi-species gas sensing systems.
quantum cascade laser dual-wavelength mid-infrared 
Chinese Optics Letters
2023, 21(1): 011408
Author Affiliations
Abstract
1 Photonics Laboratory, Department of Physics, Dankook University, Cheonan 31116, Republic of Korea
2 Center for Basic Science Research at DKU, Dankook University, Cheonan 31116, Republic of Korea
Non-interferometric X-ray quantitative phase imaging (XQPI), much simpler than the interferometric scheme, has provided high-resolution and reliable phase-contrast images. We report on implementing the volumetric XQPI images using concurrent-bidirectional scanning of the orthogonal plane on the optical axis of the Foucault differential filter; we then extracted data in conjunction with the transport-intensity equation. The volumetric image of the laminate microstructure of the gills of a fish was successfully reconstructed to demonstrate our XQPI method. The method can perform 3D rendering without any rotational motion for laterally extended objects by manipulating incoherent X-rays using the pinhole array.
X-ray imaging phase contrast imaging Foucault differential filter transport-intensity equation 
Chinese Optics Letters
2023, 21(1): 013401
Tao Zhuang 1Haifeng Hu 1,2,3,*Qiwen Zhan 1,2,3,**
Author Affiliations
Abstract
1 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Zhangjiang Laboratory, Shanghai 201204, China
3 Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
The chiral feature of an optical field can be evaluated by the parameter of g-factor enhancement, which is helpful to enhance chiroptic signals from a chiral dipole. In this work, the superchiral spot has been theoretically proposed in metal-insulator-metal waveguides. The g-factor enhancement of the superchiral spot can be enhanced by 67-fold more than that of circularly polarized light, and the spot is confined in the deep wavelength scale along each spatial dimension. Moreover, the position of the superchiral spot can be tuned by manipulating the incident field. The tunable superchiral spot may find applications in chiral imaging and sensing.
circular dichroism superchiral spot radially polarized beam metal-insulator-metal waveguide 
Chinese Optics Letters
2023, 21(1): 013601
Author Affiliations
Abstract
Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
We report the modulation of epsilon-near-zero (ENZ) wavelength and enhanced third-order nonlinearity in indium tin oxide (ITO)/Au multilayer films. The samples consisting of five-layer 40 nm ITO films spaced by four-layer ultrathin Au films of different thickness, i.e., ITO(40 nm)/[Au(x)/ITO(40 nm)]4, were prepared by magnetron sputtering at room temperature. The ENZ wavelength in the multilayer films is theoretically calculated and experimentally confirmed. The nonlinear refractive index and nonlinear absorption coefficient of the samples of x=0, 2, 3, 4 nm were determined using the Z-scan method at a wavelength of 1.064 µm. The large nonlinear refractive index n2=1.12×10-13 m2/W and nonlinear absorption coefficient β=-1.78×10-7 m/W in the sample of x = 4 nm are both four times larger than those in the single-layer ITO film. The large optical nonlinearity due to the ENZ enhancement and carrier concentration is discussed. The results indicate that the ITO/Au multilayer films are promising for advanced all-optical devices.
third-order nonlinearity epsilon-near-zero wavelength multilayer 
Chinese Optics Letters
2023, 21(1): 013602