西安理工大学 自动化与信息工程学院,西安 710048
为实现有机光电探测器对三基色(红、绿、蓝)的全响应以及器件性能的改善,研究了在P3HT∶PCBM活性层中,掺入非富勒烯受体ITIC实现光谱拓宽以及通过改善迁移率的平衡性和活性层表面形态,进而改善探测器性能的方法,着重研究了ITIC受体含量对探测器光电学性能的影响。在此基础上,获得了一个覆盖400~800 nm波长范围的三基色探测器,并且在低偏压-1.5 V下三基色(波长为630、530和460 nm)的外量子效率EQE和比探测率D*分别达到了56%、68%、52%和1.17×1012 Jones、1.4×1012 Jones、1.2×1012 Jones。结果表明:在P3HT:PC61BM中混入适量的ITIC,不仅可将光谱拓宽到400~800 nm,改善器件的光学特性,而且还可以提高激子解离率和载流子收集率,降低混合薄膜中的双分子复合,使器件电学特性得到了明显改善。本文研究为研发宽光谱高探测率三基色有机光电探测器提供了一种新思路。
有机光电探测器 体异质结 三元活性层 激子解离 ITIC Organic photodetectors Bulk heterojunction Ternary active layer Exciton dissociation ITIC
1 西南民族大学 电子信息学院 信息材料四川省高校重点实验室,成都 610041
2 电子科技大学 电子科学与工程学院 电子薄膜与集成器件国家重点实验室,成都 610054
采用修饰的高分子网络凝胶法成功制备了Mn2O3复合Mn掺杂ZnO纳米复合光催化剂(Mn:ZnO/Mn2O3),并基于模拟太阳光照射下罗丹明B(RhB)及亚甲基蓝(MB)染料的光降解研究了催化剂光催化降解有机染料的特性。X射线衍射,扫描电子显微镜及BET比表面积测试结果显示,微量(0.1 mol%)Mn掺杂再复合微量(0.2 mol%)Mn2O3后,Mn:ZnO/Mn2O3的颗粒尺寸减小且分散性提高,有效比表面积增大。紫外-可见光吸收光谱表明,相对于纯ZnO,Mn:ZnO/Mn2O3在可见光区域的光吸收能力明显提高。光致发光光谱表明微量Mn掺杂和微量Mn2O3复合促进了光生电子-空穴对的分离。结合X射线光电子能谱,发现可见光吸收能力和光生电子-空穴对分离率的提高源于催化剂表面氧空位的增加以及Mn:ZnO和Mn2O3之间形成的Ⅱ型异质结结构。因此,Mn:ZnO/Mn2O3对RhB的降解展现出稳定且优越的光催化活性。然而,由于Mn2O3的带隙(Eg≈1.4 eV)过窄,其价带位置高于羟基自由基(·OH)的氧化还原电位,因此光生空穴的氧化电势过低,无法生成氧化能力更强的·OH,这导致Mn2O3复合ZnO光催化剂(ZnO/Mn2O3)对RhB和MB的光降解效率降低。此外,Mn:ZnO/Mn2O3对RhB和MB展现出选择性光降解行为,即对容易降解的MB的光降解效率明显降低。这种选择性光催化特性归因于光催化反应过程中活性物种之间的差异性以及催化剂零电荷点和初始染料溶液的pH值之间的关系。
纳米光催化剂 离子掺杂 半导体复合 Ⅱ型异质结 高分子网络凝胶法 Nano-photocatalysts Ions doping Semiconductor coupling Type Ⅱ heterojunction Polymer network gel method
1 南京大学 集成电路学院,苏州 215163
2 南京大学 电子科学与工程学院,南京 210093
3 西北大学 化学与材料科学学院,西安 710069
4 四川大学 物理学院,成都 610065
5 中山大学 微电子科学与技术学院,珠海 519082
6 西安交通大学 电子科学与工程学院,西安 710049
7 南京大学 现代工程与应用科学学院,南京 210093
人工设计的光子学器件在现代光学的各个领域都有广阔的应用前景。传统光子学器件的设计通常是基于已知的物理模型,然后通过数值模拟方法对结构进行优化设计。由于器件结构很大程度上依赖于先验模型,所以传统优化设计的自由度是有限的。随着近年来对高性能光子学器件需求的日益增长,具有更高设计自由度的逆向设计方法得到了快速发展。逆向设计方法打破了传统方法的设计局限性,可以在全参数空间中实现高效的参数优化,因此更可能得到具有极限性能的器件结构。本文总结了光子学器件逆向设计的常用方法,并给出了逆向设计在各个光子学领域中的具体应用。随着计算机科学的不断发展,逆向设计方法展现出无与伦比的潜力,有望在各个光学领域中实现更高自由度的光场调控。
遗传算法 梯度下降算法 拓扑优化 神经网络 纳米光子学 Genetic algorithm Gradient descent algorithm Topology optimization Neural network Nanophotonics
华侨大学 信息科学与工程学院 福建省光传输与变换重点实验室,厦门 361021
提出一种通用式突变算子用于增强反馈式波前整形系统的调控效率,进而实现激光透过散射介质后的高效聚焦。为验证该突变算子提高聚焦效率的有效性,在经典优化算法,包括遗传算法、粒子种群算法、蚁群算法、模拟退火算法等四种算法的基础上引入突变算子,以优化结束后的增强因子和达到最高增强因子时的迭代周期数来表征聚焦效率。经过数值仿真和实验验证,该突变算子的引入使得四种经典优化算法的聚焦效率均得到大幅提升,增强因子提升了25%以上,同时迭代周期数减少了63%以上。当增加调控单元数量时,突变算子的高效性将更为显著。为进一步验证该突变算子的通用性,对二元振幅型调制以及多点聚焦进行了数值模拟分析,结果表明该突变算子有效增强了聚焦效率。该研究为反馈式波前整形的多种经典算法与多种调控方式提供了更高效的聚焦策略,实现了散射介质后更快更强的光斑聚焦,在光捕获、光遗传学等领域具有潜在的应用价值。
光场调控 波前整形 优化算法 散射介质 Optical modulation Wavefront shaping Optimization algorithm Scattering medium
1 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室,西安 710119
2 中国科学院大学,北京 100049
3 西安中科原子精密制造科技有限公司,西安 710110
在250 ℃的低温下,以三甲基镓、四(二甲氨基)钛为前躯体源,O3为反应气体,采用热原子层沉积制备了Ti掺杂Ga2O3(TGO)薄膜。Ga2O3和TiO2的生长速率分别为0.037 nm/cycle和0.08 nm/cycle,TGO薄膜厚度低于理论计算值。X射线光电子能谱仪测试结果表明膜中Ti浓度随Ga2O3/TiO2循环比减少而增加,O 1s、Ga 2p和Ti 2p的峰位置向较低的结合能移动,这是因为Ti原子取代了Ga原子的某些位点引起了结合能降低,表明Ti元素成功掺杂到Ga2O3薄膜中。TiO2和Ga2O3的芯能级光谱分析表明薄膜中存有Ti4+和Ga3+离子。TGO薄膜的O 1s芯能级光谱中Ga-O键随着Ti-O键含量增加而下降,表明TGO薄膜中形成Ga2O3-TiO2复合材料。掠入射X射线衍射图中没有出现衍射峰,表明沉积的Ga2O3和TGO薄膜为非晶态。原子力显微镜观察到薄膜表面平整光滑,均方根粗糙度为0.377 nm,这得益于原子层沉积逐层生长的优势。TGO薄膜在可见光区表现出较高的透明度,对紫外光强烈吸收。随着Ti掺杂浓度的增加,TGO薄膜的折射率由于化学变化从1.75增加到1.99,紫外光区消光系数增大引起透过率减小,吸收边缘出现了红移,光学带隙从4.9 eV减小到4.3 eV。分光光度法和X射线光电子能谱法测定薄膜光学带隙所得的结果一致。
氧化镓薄膜 Ti掺杂Ga2O3薄膜 热原子层沉积 折射率 光学带隙 Gallium oxide thin film Ti-doped Ga2O3 thin films Thermal atomic layer deposition Refractive index Optical band gap
1 中国科学院西安光学精密研究所 瞬态光学与光子技术国家重点实验室,西安 710119
2 中国科学院大学,北京 100049
3 西安中科原子精密制造科技有限公司,西安 710110
基于原子层沉积技术提出了一种TiO2∶Al2O3纳米复合薄膜作为微通道板导电层材料。根据微通道板的规格参数以及体电阻要求,推导出微通道板导电层薄膜的方块电阻范围为1.73×1013~5.20×1013 Ω/□;研究了TiO2循环百分比与TiO2∶Al2O3纳米复合薄膜方块电阻之间的关系,发现当TiO2循环百分比在30.27%~37.06%时复合薄膜电阻率满足微通道板导电层要求;设计制备了20 nm的Al2O3过渡层以及100 nm的TiO2∶Al2O3纳米复合薄膜,测量厚度约为122 nm,且薄膜表面平整光滑,实现了微通道板微孔内壁TiO2∶Al2O3纳米复合薄膜导电层的制备。在1 000 V测试电压下,其体电阻为212.81 MΩ,增益为18 357,表明TiO2∶Al2O3纳米复合薄膜作为微通道板导电层具有可行性。
原子层沉积 微通道板 二氧化钛 氧化铝 导电层 Atomic layer deposition Microchannel plate TiO2 Al2O3 Conductive layer