Supplementary Material

Role of the interlayer interactions in ultrafast terahertz thermal dynamics of bilayer graphene

Tingyuan Jia^{1,2,3}, Shaoming Xie^{1,2}, Zeyu Zhang^{1,2,3,4*}, Qinxue Yin^{1,3}, Chunwei Wang^{1,2,3,5}, Chenjing Quan^{1,2}, Xiao Xing¹, Juan Du^{1,2,3,4**} and Yuxin Leng^{1,2,3,5***}

- ¹ State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
- ² Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- ³ Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- ⁴ School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
- ⁵ School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- *Corresponding author: zhangzeyu@ucas.ac.cn
- **Corresponding author: dujuan@siom.ac.cn
- ***Corresponding author: lengyuxin@siom.ac.cn

Graphene samples fabrication

The graphene in the present study is synthesized by a chemical vapor deposition (CVD) method and then transferred to SiO_2 . For an optical study, a poly methyl methacrylate PMMA layer is spin-coated on the asgrown graphene on Cu-foil. Then, the Cu-layer is etched out using a 0.1M ammonium per sulphate $(NH_4)_2S_2O_8$ solution. After rinsing with de-ionized water several times, graphene was transferred onto the fused SiO_2 substrate. Finally, the PMMA layer is dissolved in acetone three times. To remove any possible PMMA residual, the graphene sample is annealed in a vacuum at 350 °C for 1.5 h.

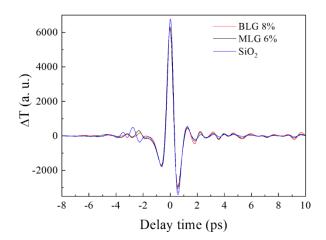


Figure S1. The static terahertz time domain spectroscopy of the substrate, BLG and MLG.

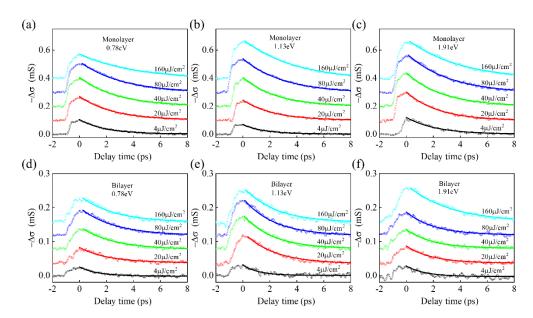


Figure S2. The time-resolved signals $\Delta\sigma$ of BLG and MLG films dependent on the different pump fluence. (a) - (c) The dependence of photoinduced THz conductivity of monolayer graphene as a function of the delay time at 0.78 eV, 1.13 eV and 1.91 eV, respectively; (d) - (f) The photoinduced THz conductivity of bilayer graphene as a function of the delay time at 0.78 eV, 1.13 eV and 1.91 eV, respectively.

The measurement is based on the principle that ΔE is proportional to $\Delta \sigma = \frac{1+n}{Z_0} \left(\frac{1}{1+\Delta T/T_0} - 1 \right)$ where n=1.95 is the refractive index of the fused silica substrate, and $Z_0=377$ is the free space impedance. The time-resolved signals $\Delta \sigma$ of monolayer and bilayer graphene films dependent on the different pump fluence under pump photon energy of 0.78 eV, 1.13 eV, and 1.91 eV are shown in Figure S2, respectively.