首页 > 论文 > 光学与光电技术 > 9卷 > 3期(pp:38-43)

基于倏逝场微小粒子驱动技术研究进展

Research Progress of Micro-Particles Pushed by Evanescent Field

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

处于倏逝场中的微小粒子会受到辐射压力的作用而朝着倏逝场的传播方向运动,基于此原理的微小粒子驱动技术可用于介质颗粒、胶体颗粒、生物细胞等微小粒子的捕获和驱动。由于倏逝场光学微操作系统不会受到物镜焦深和激光光斑尺寸的限制,因此它比自由空间系统的优越性更强,而波导形成的光学力可以应用于长距离驱动,其仅仅受限于系统的散射和吸收损耗。综述了基于倏逝场微小粒子驱动技术的最新进展,包括广域倏逝场微操纵、平面波导结构的倏逝场微操纵和光纤结构的倏逝场微操纵,并对其进行了比较,分析了它们的捕获能力、驱动效率、结构特点等问题,以及未来的发展趋势。

Abstract

Particles such as dielectric particles, colloidal particles and cells can be trapped and pushed by the action of optical forces in evanescent field. Evanescent field-based optical transport and trapping using photonic structures has several advantages over free-space systems. It is not limited by the focal depth of the objective lens and the spot size of the laser. With waveguides the optical forces can be applied over long distances, limited only by the scattering and absorption losses in the system. The manipulation of particles in evanescent field has attracted a great interest of researchers. New advances of manipulation of particles in evanescent field by prism, plannar waveguide and fiber are introduced in this paper. The capability of trapping, efficiency of driving and prospect for further inverstigation are discussed as well.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

所属栏目:光纤与光通信

基金项目:国家自然科学基金仪器专项(60927008)、国家自然科学基金(60877046、60807032)资助项目

收稿日期:2011-01-05

修改稿日期:2011-03-11

网络出版日期:--

作者单位    点击查看

邓洪昌:哈尔滨工程大学理学院, 黑龙江 哈尔滨 150001
毕思思:哈尔滨工程大学理学院, 黑龙江 哈尔滨 150001
赵浩宇:哈尔滨工程大学理学院, 黑龙江 哈尔滨 150001
苑立波:哈尔滨工程大学理学院, 黑龙江 哈尔滨 150001

联系人作者:邓洪昌(denghongchang86@163.com)

备注:邓洪昌(1986-),男,博士研究生,主要从事光纤及光纤传感方面的研究。

【1】A Ashkin, J M Dziedzic, J E Bjorkholm, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Opt. Lett., 1986, 11(5): 288-290.

【2】D G Grier. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.

【3】S Kawata, T Sugiura. Movement of micrometer-sized particles in the evanescent field of a laser beam[J]. Opt. Lett., 1992, 17(11): 772-774.

【4】S Kawata, T Tani. Optically driven Mie particles in an evanescent field along a channeled waveguide[J]. Opt. Lett., 1996, 21(21): 1768-1770.

【5】R J Oetama, J Y Walz. Translation of colloidal particles next to a flat plate using evanescent waves[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 211(2-3): 179-195.

【6】V Garcés-Chvez, K Dholakia, G Spalding. Extended-area optically induced organization of microparticles on a surface[J]. App. Phys. Lett., 2005, 85: 1-3.

【7】P C Ke, X S Gan, J Szajman, et al. Optimizing the strength of an evanescent wave generated from a prism coated with a double-layer thin-film stack[J]. Biomag, 1997, 5(1): 1-8.

【8】P C Ke, M Gu. Effect of the sample condition on the enhanced evanescent wave used for laser-trapping near-field microscopy[J]. Optik, 1998, 109(3): 104-108.

【9】P J Reece, V Garcés-Chévez, K Dholakia. Near-field optical micromanipulation with cavity enhanced evanescent waves[J]. App. Phys. Lett., 2006, 88: 221116.

【10】G Labeyrie, A Landragin, J Von Zanthier, et al. Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors[J]. Quantum Semiclassic. Opt., 1996, 8(3): 603-627.

【11】L N Ng, M N Zervas, J S Wilkinson. Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide[J]. Appl. Phys. Lett., 2000, 76(15): 1993-1995.

【12】L N Ng, B J Luff, M N Zervas, et al. Propulsion of gold nanoparticles on optical waveguides[J]. Opt. Commun., 2002, 208(1-3): 117-124.

【13】T Tanaka, S Yamamoto. Optically induced propulsion of small particles in an evanescent field of higher propagation mode in a multimode channeled waveguide[J]. Appl. Phys. Lett., 2000, 77(20): 3131-3133.

【14】T Tanaka, S Yamamoto. Optically induced meandering Mie particles driven by the beat of coupled guided modes produced in a multimode waveguide[J]. Jpn. J. Appl. Phys., 2002, 41(3A): 260-262.

【15】K Grujic, O G Helles, J S Wilkinson, et al. Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass[J]. Opt. Commun., 2004, 239(4-6): 227-235.

【16】K Grujic, O G Helles, J P Hole, et al. Sorting of polystyrene microspheres using a Y-branched optical waveguide[J]. Opt. Express, 2005, 13(1): 1-7.

【17】Katarina Grujic, Olav Gaute Helles. Dielectric microsphere manipulation and chain assembly by counterpropagating[J]. Opt. Express, 2007, 15(10): 6470-6477.

【18】P B Johnson, R W Christy. Optical constants of noble metals[J]. Phys. Rev. B, 1972, 6(12): 4370-4379.

【19】J Patrick Hole, James S Wilkinson. Velocity distribution of Gold nanoparticles trapped on an optical waveguide[J]. Opt. Express, 2005, 13(10): 3896-3901.

【20】S Gaugiran, S G tin, G Colas, et al. Optical manipulation of microparticles and cells on silicon nitride waveguides[J]. Opt. Express, 2005, 13(18): 6956-6963.

【21】B S Schmidt, A H J Yang, D Erickson, et al. Optofluidic trapping and transport on solid core waveguides within a microfluidic device[J]. Opt. Express, 2007, 15(22): 14322-14334.

【22】B S Ahluwalia, A Z Subramanian, O G Helleso, et al. Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles[J]. IEEE. Phot. Tech. Lett., 2009, 21(19): 1408-1410.

【23】Balpreet Singh Ahluwalia, Olav Gaute Helles, Ananth Z Subramanianb, et al. Fabrication and optimization of Tantalum Pentoxide waveguides for optical micro-propulsion[C]. Proc. SPIE, 2010, 7604: 76040W.

【24】Almeida V R, Xu Q F, et al. Guiding and confining light in void nanostructure[J]. Opt. Lett., 2004, 29(11): 1209-1211.

【25】Allen H J Yang, Sean D Moore, Bradley S Schmidt, et al. Optical manipulation of nanoparticles and biomoleculesin sub-wavelength slot waveguides[J]. Nature, Letters, 2009, 457(7225): 71-75.

【26】Allen H J Yang, Tadsanapan Lerdsuchatawanich, David Erickson. Forces and transport velocities for a particle in a slot waveguide[J]. Nano Lett., 2009, 9(3): 1182-1188.

【27】Allen H J Yang, David Erickson. Optofluidic ring resonator switch for optical particle transport[J]. Lab Chip, 2010, 10(6): 769-774.

【28】Shiyun Lin, Ethan Schonbrun, Kenneth Crozier. Optical manipulation with planar silicon microring resonators[J]. Nano Lett., 2010, 10(7): 2408-2411.

【29】Hong Cai, Andrew W Poon. Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add drop devices[J]. Optics Letters, 2010, 35(17): 2855-2857.

【30】G Brambilla, G S Murugan, J S Wilkinson, et al. Optical manipulation of microspheres along a subwavelength optical wire[J]. Opt. Lett., 2007, 32(20): 3041-3043.

【31】Ganapathy Senthil Murugan, Gilberto Brambilla, James S Wilkinson, et al. Optical propulsion of individual and clustered microspheres along sub-micron optical wires[J]. Jpn. J. Appl. Phys., 2008, 47(8): 6716-6718.

【32】Fang-Wen Sheu, Hong-Yu Wu, Sy-Hann Chen. Using a slightly tapered optical fiber to attract and transport microparticles[J]. Opt. Express, 2010, 18(6): 5574-5579.

【33】E Almaas, I Brevik. Radiation forces on a micrometer-sized sphere in an evanescent field[J]. J. Opt. Soc. Am., 1996, (B12): 2429-2438.

【34】M Lester, M Nieto-Vesperinas. Optical forces on microparticles in an evanescent laser field[J]. Opt. Lett., 1999, 24: 936-938.

【35】H Y Jaising, O G Helles. Radiation forces on a Mie particle in the evanescent field of an optical waveguide[J]. Opt. Commun., 2005, 246: 373-383.

引用该论文

DENG Hong-chang,BI Si-si,ZHAO Hao-yu,YUAN Li-bo. Research Progress of Micro-Particles Pushed by Evanescent Field[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2011, 9(3): 38-43

邓洪昌,毕思思,赵浩宇,苑立波. 基于倏逝场微小粒子驱动技术研究进展[J]. 光学与光电技术, 2011, 9(3): 38-43

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF