光学学报, 2013, 33 (12): 1234001, 网络出版: 2013-11-19   

极紫外光学元件表面碳污染模型的建立

Carbon Contamination Modeling on Extreme Ultraviolet Optic Surfaces
作者单位
1 中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
为有效评估和预测在极紫外光辐照下,极紫外光刻机中残留的碳氢化合物气体在多层膜光学元件表面造成的碳污染状况,建立了光学元件表面碳沉积的复杂理论模型,描述了残留碳氢化合物在光学表面的传输,在极紫外光子和二次电子激发下引起的分子分解,并在光学表面形成碳沉积层的过程。模型预测结果和实验数据吻合得很好。理论分析表明引起碳氢化合物分解的主要原因是光子分解而不是二次电子分解。碳层的增长依赖于碳氢化合物气体偏压和极紫外光强,具有较轻分子量的碳氢化合物(<~100 amu)对污染的贡献很小。同时当基底温度适度增加时(~30 ℃),能够加速表面碳氢化合物分子的解吸附,可有效减少碳污染。
Abstract
In order to estimate and predict the carbonaceous contamination of extreme ultraviolet (EUV) multilayer optical element surfaces caused by EUV irradiation in the presence of residual hydrocarbon gases, a comprehensive model of radiation-induced carbon growth on EUV optic surfaces is presented. The model describes the transport of residual hydrocarbons to the irradiated area and the subsequent dissociation of the hydrocarbon by both EUV ionization and secondary electron excitation. The dissociated hydrocarbons are reactive and form a carbonaceous film. Model predictions fit experimental data quite well. Theoretical analysis indicates that the primary cause of hydrocarbon dissociation is bond breaking by direct photon absorption rather than by secondary electrons. Calculations also demonstrate that the growth of carbon film depends on various conditions of hydrocarbon partial pressure and EUV power. The model successfully predicts that light hydrocarbons (<~100 amu) pose a negligible risk to EUV optics and modest increases in substrate temperature (~30 ℃), which will substantially reduce optic contamination by increasing hydrocarbon desorption from the surface.

鹿国庆, 卢启鹏, 彭忠琦, 龚学鹏. 极紫外光学元件表面碳污染模型的建立[J]. 光学学报, 2013, 33(12): 1234001. Lu Guoqing, Lu Qipeng, Peng Zhongqi, Gong Xuepeng. Carbon Contamination Modeling on Extreme Ultraviolet Optic Surfaces[J]. Acta Optica Sinica, 2013, 33(12): 1234001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!