亚微米粒子虚拟冲击器的研制
Development of a Virtual Impactor for Submicron Particles
摘要
亚微米虚拟冲击器是实现高灵敏度生物气溶胶光学在线监测的前提,是当前的研究热点之一。基于空气动力学理论与相关研究基础,设计了一种切割粒径为0.4 μm的亚微米级粒子虚拟冲击器,利用计算流体动力学(CFD)分析软件Fluent以及离散相模型对虚拟冲击器结构的入口喷嘴与收集孔间距、收集孔径和流量比等各种设计参数进行模拟与分析,得到了一组优化设计参数并制作了虚拟冲击器实物。测试结果表明,该虚拟冲击器具有良好的浓缩效果,对0.37、0.5、0.7 μm聚苯乙烯乳胶球(PSL)粒子的收集效率等参数与仿真结果基本吻合,验证了流体动力学分析方法的可行性。该虚拟冲击器切割粒径的实验测试结果达到0.4 μm,满足实际应用需求。
Abstract
A virtual impactor for submicron particles is prerequisite for bio-aerosol optical online monitoring and it is a hot research topic. Based on aerodynamics and past research work, a 0.4-μm-cutpoint virtual impactor is designed with the help of a commercial computational fluid dynamics (CFD) package, Fluent. Discrete phase model (DPM) is applied to simulate and analyze the effect of nozzle-to-collection probe distance, collection probe diameter and minor-to-major flow ratio. The virtual impactor with optimum design parameters is fabricated and tested. According to the experimental results, the virtual impactor can collect 0.37 μm, 0.5 μm and 0.7 μm PSL microspheres efficiently as desired, which proves that the CFD method is practical. Cutoff diameter of the virtual impactor can reach 0.4 μm, which is fit for practical applications.
中图分类号:TN247
所属栏目:光学设计与制造
基金项目:上海市自然科学基金(11ZR1441700)
收稿日期:2013-08-16
修改稿日期:2013-08-20
网络出版日期:--
作者单位 点击查看
赵永凯:中国科学院上海光学精密机械研究所, 上海 201800
杨巍:中国科学院上海光学精密机械研究所, 上海 201800
黄惠杰:中国科学院上海光学精密机械研究所, 上海 201800
联系人作者:张佩(zhp19860626@163.com)
备注:张佩(1986—),男,博士研究生,主要从事精密光电测控技术方面的研究。
【1】David S Ensor. Aerosol Science and Technology: History and Reviews[M]. Minnesota, USA: Research Triangle Institute Press, 2011. 509-525.
【2】Wathes Christopher M, Cox C Barry. Bioaerosols Handbook[M]. Chelsea: Lewis Publishers, 1995. 11-14.
【3】Richard DeFreez. LIF bio-aerosol threat triggers: then and now[C]. SPIE, 2009, 7484: 74840H.
【6】Virgil A Marple, Chung M Chien. Virtual impactors: a theoretical study[J]. Environmental Science & Technology, 1980, 14(8): 976-984.
【7】M C Kim, K W Lee. Design modification of virtual impactor for enhancing particle concentration performance[J]. Aerosol Science & Technology, 2000, 32(3): 233-242.
【8】J Keskinen, K Janka. Virtual impactor as an accessory to optical particle counters[J]. Aerosol Science & Technology, 1987, 6(1): 79-83.
【9】Virgil A Marple, Benjamin Y H Liu, Robert M Burton. High-volume impactor for sampling fine and coarse particles[J]. Journal of the Air & Waste Management Association, 1990, 40(5): 762-767.
【10】Liang Xiaojun. Design on the Low Concentration Bioaerosol Concentrator and Its Verification of Capacity[D]. Beijing: Chinese Center for Disease Control and Prevention, 2011. 25-26.
梁晓军. 一种低浓度微生物气溶胶浓缩器的设计和性能验证[D]. 北京: 中国疾病预防控制中心, 2011. 25-26.
【12】Ronald G Pinnick, Steven C Hill, Stanley Niles, et al.. Real-time measurement of fluorescence spectra from single airborne biological particles[J]. Field Analytical Chemistry and Technology, 1999, 3(4-5): 221-239.
【13】Richard DeFreez, Ezra Merrill, Sam Albanna, et al.. Design considerations and performance characteristics of AirSentinel, a new UV-LIF bio-aerosol threat detection trigger[C]. SPIE, 2005, 5990: 59900O.
【14】Jung Hyeun Kim, George W Mulholland, Scott R Kukuck, et al.. Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (Nano-DMA) for Knudsen number from 0.5 to 83[J]. Journal of Research of the National Institute of Standards and Technology, 2005, 110(1): 31-54.
【15】Zhou Deqing. A Course of the Science of Microbiology[M]. Beijing: Higher Education Press, 2002. 9-10.
周德庆. 微生物学教程[M]. 北京: 高等教育出版社, 2002. 9-10.
【16】Billy W Loo, Christopher P Cork. Development of high efficiency virtual impactors[J]. Aerosol Science & Technology, 1988, 9(3): 167-176
【17】He Cunxing, Zhang Tiehua. Hydraulic and Pneumatic Transmission[M]. Wuhan: Huazhong University of Science and Technology Press, 1998. 244-245.
何存兴, 张铁华. 液压传动与气压传动[M]. 武汉: 华中理工大学出版社, 1998. 244-245.
【21】Zhu Hongjun, Lin YuanHua, Xie Longhan. Fluent 12 Fluid Analysis and Engineering Simulation[M]. Beijing: Tsinghua University Press, 2011. 187.
朱红钧, 林元华, 谢龙汉. Fluent 12流体分析及工程仿真[M]. 北京: 清华大学出版社, 2011. 187.
引用该论文
Zhang Pei,Zhao Yongkai,Yang Wei,Huang Huijie. Development of a Virtual Impactor for Submicron Particles[J]. Chinese Journal of Lasers, 2014, 41(1): 0116002
张佩,赵永凯,杨巍,黄惠杰. 亚微米粒子虚拟冲击器的研制[J]. 中国激光, 2014, 41(1): 0116002
被引情况
【1】卜一川,赵永凯,陈正岩,张佩,黄惠杰. 基于光散射的实时气溶胶粒子形状识别技术研究. 中国激光, 2015, 42(4): 413003--1
【2】饶志敏,华灯鑫,何廷尧,乐静. 激光诱导生物气溶胶荧光雷达的设计与数值仿真. 光学学报, 2015, 35(10): 1028001--1