首页 > 论文 > 光学学报 > 40卷 > 23期(pp:2312004--1)

非接触式双波长激光路面气象传感方法研究

Methods for Non-Contact Road Surface Meteorological Sensing Based on Dual-Wavelength Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

道路湿滑程度是表征公路交通安全的重要指标,路面气象传感技术能准确检测道路积水和结冰的情况,进而定量分析临界滑水速度和路面附着系数等湿滑参数,通过实时调整车速甚至封闭道路,可有效预防交通事故。非接触式路面气象传感方法具有精度高、不破坏路基和安装灵活等特点,是目前的研究热点,但核心技术仍被国外垄断,设备价格十分昂贵。基于积水、结冰路面的红外反射光谱特征,利用1310 nm与1550 nm激光的反射光强,研究了一套水膜厚度检测及冰水状态判别的数学模型和探测方法。以此为基础建立了路面气象传感系统,并对系统的光学结构进行了仿真优化。实验结果表明,该系统的测量距离可达3~5 m,水膜厚度在9 mm下的测量误差小于0.1 mm,系统能够精准判别路面干燥、积水和结冰等气象状态,具备良好的实用价值。

Abstract

The extent of road slippery is an important indicator of road traffic safety. The road surface meteorological sensing technologies can accurately detect the conditions of water accumulation and ice formation on the road, and thus can quantitatively analyze the slippery parameters such as critical hydroplaning velocity and road adhesion coefficient. Using these technologies, we can effectively prevent traffic accidents by adjusting vehicle speed or even closing roads in real time. The non-contact road surface meteorological sensing method is currently a hot research topic because of its high accuracy, no damage to roadbeds and flexible installation. However, its key technology is still monopolized abroad and the equipment is very expensive. Based on the characteristics of infrared reflection spectra of stagnant water and ice on road surfaces, we use the reflected laser intensities at 1310 nm and 1550 nm to study a set of mathematical models and detection methods for detecting water film thickness and distinguishing water/ice state. Based on it, a road surface meteorological sensing system is established and the optical structure of this system is optimized by optical simulation. The experimental results show that the detection distance of the system reaches 3-5 m and the measurement error of water film thickness is less than 0.1 mm in the range of 9 mm. The system can accurately distinguish the meteorological states of drying, water accumulation and ice formation on road surfaces, which has good practical value.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TL25+3

DOI:10.3788/AOS202040.2312004

所属栏目:仪器,测量与计量

基金项目:重庆市自然科学基金面上项目、重庆市教委科学技术研究计划青年项目、重庆市教委科学技术研究计划重点项目、重庆理工大学研究生创新项目;

收稿日期:2020-07-20

修改稿日期:2020-08-26

网络出版日期:2020-12-01

作者单位    点击查看

吴德操:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
柳朋:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
罗彬彬:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
蒲君豪:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
刘恩华:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
蒋上海:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
汤斌:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
宋涛:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054
赵明富:重庆理工大学光纤传感与光电检测重庆市重点实验室, 重庆 400054

联系人作者:罗彬彬(luobinbin@cqut.edu.cn)

备注:重庆市自然科学基金面上项目、重庆市教委科学技术研究计划青年项目、重庆市教委科学技术研究计划重点项目、重庆理工大学研究生创新项目;

【1】Horne W B. Tire hydroplaning and its effects on tire traction [J]. Highway Research Record. 1968, 24-33.Horne W B. Tire hydroplaning and its effects on tire traction [J]. Highway Research Record. 1968, 24-33.

【2】Kumar S S, Anupam K, Scarpas T, et al. Study of hydroplaning risk on rolling and sliding passenger car [J]. Procedia: Social and Behavioral Sciences. 2012, 53: 1019-1027.Kumar S S, Anupam K, Scarpas T, et al. Study of hydroplaning risk on rolling and sliding passenger car [J]. Procedia: Social and Behavioral Sciences. 2012, 53: 1019-1027.

【3】Singh D, Patel H, Habal A, et al. Evolution of coefficient of friction between tire and pavement under wet conditions using surface free energy technique [J]. Construction and Building Materials. 2019, 204: 105-112.Singh D, Patel H, Habal A, et al. Evolution of coefficient of friction between tire and pavement under wet conditions using surface free energy technique [J]. Construction and Building Materials. 2019, 204: 105-112.

【4】Tan T, Xing C, Tan Y Q, et al. Safety aspects on icy asphalt pavement in cold region through field investigations [J]. Cold Regions Science and Technology. 2019, 161: 21-31.Tan T, Xing C, Tan Y Q, et al. Safety aspects on icy asphalt pavement in cold region through field investigations [J]. Cold Regions Science and Technology. 2019, 161: 21-31.

【5】Moroń Z. Investigations of van der Pauw method applied for measuring electrical conductivity of electrolyte solutions: measurement of electrolytic conductivity [J]. Measurement. 2003, 33(3): 281-290.

【6】Iguchi T. Evolution of the rain profiling algorithm for the TRMM Precipitation Radar . [C]//2011 IEEE International Geoscience and Remote Sensing Symposium, July 24-29, 2011, Vancouver, BC, Canada. New York: IEEE. 2011, 12357601.

【7】Shen Y C, Wang S. Condensation frosting detection and characterization using a capacitance sensing approach [J]. International Journal of Heat and Mass Transfer. 2020, 147: 118968.

【8】Casselgren J, Rosendahl S, Sj?dahl M, et al. Road condition analysis using NIR illumination and compensating for surrounding light [J]. Optics and Lasers in Engineering. 2016, 77: 175-182.Casselgren J, Rosendahl S, Sj?dahl M, et al. Road condition analysis using NIR illumination and compensating for surrounding light [J]. Optics and Lasers in Engineering. 2016, 77: 175-182.

【9】Xu S S. Research on a non-contact pavement meteorological sensing technology Beijing: University of Chinese Academy of Sciences.[D]. 0.
徐松松. 一种非接触式路面气象传感技术研究 北京: 中国科学院大学[D]. 0.

【10】Stavn R H. Light attenuation in natural waters: Gershun''''s law, Lambert-Beer law, and the mean light path [J]. Applied Optics. 1981, 20(14): 2326-2327.

【11】Ding J Y, He T B, Wang H L, et al. Detection method of volatile organic compounds based on external cavity quantum cascade laser spectroscopy [J]. Acta Optica Sinica. 2018, 38(4): 0430002.
丁俊雅, 何天博, 王洪亮, 等. 基于外腔式量子级联激光光谱的挥发性气体检测方法 [J]. 光学学报. 2018, 38(4): 0430002.

【12】Ma F X, Tian Y, Chen K, et al. Detection technology of dissolved gas in oil based on miniature photoacoustic sensor [J]. Acta Optica Sinica. 2020, 40(7): 0730003.
马凤翔, 田宇, 陈珂, 等. 基于微型光声传感器的油中溶解气体检测技术 [J]. 光学学报. 2020, 40(7): 0730003.

【13】Wang Y, Chen P, Gong C, et al. Design and simulation of optical path for collecting fluorescence signal based on TracePro software [J]. Acta Optica Sinica. 2018, 38(11): 1117001.
王岩, 陈平, 龚诚, 等. 基于TracePro软件的荧光信号光收集光路的设计与仿真 [J]. 光学学报. 2018, 38(11): 1117001.

【14】Fu X H, Ma G J, Lü J W, et al. Research on open high reflection regression devices based on TracePro [J]. Acta Optica Sinica. 2019, 39(11): 1131003.
付秀华, 马国俊, 吕景文, 等. 基于TracePro的开放型高反射回归器件的研究 [J]. 光学学报. 2019, 39(11): 1131003.

【15】Chen R S, Zhang G Z. Safety class of laser and its protection [J]. Radiation Protection. 2007, 27(5): 314-320.
陈日升, 张贵忠. 激光安全等级与防护 [J]. 辐射防护. 2007, 27(5): 314-320.

【16】Wang Y B, Li X H, Yu G H, et al. The measure method of water-depth in the infrared remote sensing road surface sensor [J]. Electronic Engineering & Product World. 2014, 21(4): 26-27, 56.
王艳斌, 李秀红, 余国河, 等. 红外遥测式路面状况传感器的水厚度测量 [J]. 电子产品世界. 2014, 21(4): 26-27, 56.

【17】Gui K, Ye L, Ge J F, et al. Road surface condition detection utilizing resonance frequency and optical technologies [J]. Sensors and Actuators A: Physical. 2019, 297: 111540.Gui K, Ye L, Ge J F, et al. Road surface condition detection utilizing resonance frequency and optical technologies [J]. Sensors and Actuators A: Physical. 2019, 297: 111540.

引用该论文

Wu Decao,Liu Peng,Luo Binbin,Pu Junhao,Liu Enhua,Jiang Shanghai,Tang Bin,Song Tao,Zhao Mingfu. Methods for Non-Contact Road Surface Meteorological Sensing Based on Dual-Wavelength Laser[J]. Acta Optica Sinica, 2020, 40(23): 2312004

吴德操,柳朋,罗彬彬,蒲君豪,刘恩华,蒋上海,汤斌,宋涛,赵明富. 非接触式双波长激光路面气象传感方法研究[J]. 光学学报, 2020, 40(23): 2312004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF