首页 > 论文 > 光子学报 > 45卷 > 1期(pp:106005--1)

FBG滤波的级联LPFG温度和折射率传感装置

Cascaded LPFG Temperature and Refractive Index Sensing Method Based on FBG Filter

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用长周期光纤光栅具有较高的温度、折射率灵敏度, 以及光纤布喇格光栅具有较高反射效率的特点, 设计了一种基于光纤布啦格光栅滤波的级联长周期光纤光栅温度和折射率传感装置.利用光纤布喇格光栅的高反射率, 将级联长周期光纤光栅干涉波峰的局部功率反射到功率计中, 实现了温度和折射率的测量.基于信号叠加原理, 对光纤布喇格光栅滤波的级联长周期光纤光栅温度和折射率传感方法的可行性进行了分析.将实际测得的功率计示数与温度以及折射率的变化进行二项式拟合, 其确定系数分别为0.9990和0.9959, 表明该传感方法可用于温度和折射率的精确测量.最后对该装置的稳定性做了一系列的测试, 验证了该传感系统具有较高的稳定性.

Abstract

Based on the high temperature and refractive index sensitivity of long period fiber gratings (LPFGs) and the high reflection efficiency of the fiber Bragg grating (FBG) filters, a temperature and refractive index sensor was designed, which is a cascaded LPFG based on the FBG filter. The temperature and refractive index were measured by using the FBG filter to reflect partial power of interference wave of the cascaded LPFG into the power meter. In this paper, the feasibility of the cascaded LPFG based on FBG filter temperature and refractive index sensor was analyzed by the signal superposition principle. Then, the binomial fitting was done between the power meter readings and changes of the temperature, and the power meter readings and refractive index. The determination coefficients are 0.9990 and 0.9959 respectively. The high stability of the proposed sensor was also tested. These results show that the cascaded LPFG based on FBG filter temperature and refractive index sensor could be used for the precise measurement of the temperature and refractive index and has a high stability.

投稿润色
补充资料

中图分类号:O438

DOI:10.3788/gzxb20164501.0106005

基金项目:浙江省新苗人才计划项目基金(No.2014R405024)资助

收稿日期:2015-06-25

修改稿日期:2015-09-08

网络出版日期:--

作者单位    点击查看

何如双:宁波大学 理学院, 浙江 宁波 315211
钱梦:宁波大学 理学院, 浙江 宁波 315211
胡雪芳:宁波大学 信息学院, 浙江 宁波 315211
陶卫东:宁波大学 理学院, 浙江 宁波 315211
张玲芬:宁波大学 理学院, 浙江 宁波 315211

联系人作者:何如双(rshuanghe@sina.cn)

备注:何如双(1989-), 男, 硕士研究生, 主要研究方向为光纤光栅传感技术.

【1】JANG H S, PARK K N, KIM J P, et al. Sensitive DNA biosensor based on a long-period grating formed on the side-polished fiber surface[J]. Optics Express, 2009, 17(5): 3855-3860.

【2】YANG J, HUANG J, LI X, et al. High-sensitivity long-period fiber grating sensor with SAN/cryptophane A for coal mine gas detection[J]. Chinese Optics Letters, 2013, 11(8): 080601.

【3】CHEN H, GU Z. Design of a gas sensor based on a cladding-reduced long period fiber grating coated with a sensitive film[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(3): 219-224.

【4】PILLA P, TRONO C, BALDINI F, et al. Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach[J]. Optics Letters, 2012, 37(19): 4152-4154.

【5】WANG Jie-yu, TONG Zheng-rong, YANG Xiu-feng, et al. Simultaneous measurement of temperature and refraction index based on multimode interference and long-period fiber grating[J]. Chinese Journal of Lasers, 2012, 39(9): 83-87.王洁玉, 童峥嵘, 杨秀峰, 等. 基于多模干涉和长周期光纤光栅的温度及折射率同时测量[J]. 中国激光, 2012, 39(9): 83-87.

【6】ZHOU Bin, LIU Gou-rong, GUAN Zu-guang, et al. An optical sensing system for the concentration of CH~ 4 based on FBG[J]. Journal of Optoelectronics Laser, 2008, 19(3): 378-380.周斌, 刘国荣, 管祖光, 等. 基于FBG的CH4溶度传感系统[J]. 光电子激光, 2008, 19(3): 378-380.

【7】JU C, CHEN X, ZHANG Z. 40Gbps 100-km SSMF VSB-IMDD OFDM transmission experiment based on SSII cancellation and FBG-filtering[C]. Optical Fiber Communication Conference. Optical Society of America, 2014: Tu2G. 6.

【8】JAMES S W, KORPOSH S, LEE S W, et al. A long period grating-based chemical sensor insensitive to the influence of interfering parameters[J]. Optics Express, 2014, 22(7): 8012-8023.

【9】YU Xiu-juan, YU Yong-long, ZHANG Min., et al. Study on the strain and temperature densing characteristics of FBG packaged by the copper slice[J]. Acta Photonica Sinica, 2006, 35(9): 1325-1328.于秀娟, 余有龙, 张敏, 等. 铜片封装光纤光栅传感器的应变和温度传感特性研究[J]. 光子学报, 2006, 35(9): 1325-1328.

【10】RUAN J, QIN Z X, ZENG Q K. A high sensitivity temperature sensor realized with cascaded long period fiber grating-based Sagnac loop[J]. Optics Communications, 2014, 31(9): 42-44.

【11】WANG X, MADSEN C K. Highly sensitive compact refractive index sensor based on phase-shifted sidewall Bragg gratings in slot waveguide[J]. Applied Optics, 2014, 53(1): 96-103.

【12】DAI Ji-xiang, YANG Ming-hong, CHEN Yun, et al. Hydrogen sensor based on d-shaped fiber bragg grating coated with WO3-Pd composite films[J]. Acta Photonica Sinica, 2011, 40(7): 1003-1007.代吉祥, 杨明红, 程芸, 等. 基于WO2-Pd复合膜的D型光纤光栅氢气传感器[J]. 光子学报, 2011, 40(7): 1003-1007.

【13】ZOU H, LIANG D, ZENG J. Dynamic strain measurement using two wavelength-matched fiber Bragg grating sensors interrogated by a cascaded long-period fiber grating[J]. Optics and Lasers in Engineering, 2012, 50(2): 199-203.

【14】LIU Z, TAN Z, YIN B, et al. Refractive index sensing characterization of a singlemode-claddingless-singlemode fiber structure based fiber ring cavity laser[J]. Optics Express, 2014, 22(5): 5037-5042.

【15】XIONG Yi-kun, HUANG Xu-guang. Optical fiber sensor for liquid refractive index based on fiber optic taper[J]. Acta Optical Sinica, 2009, 29(7): 1956-1961.熊贻坤, 黄旭光. 基于熔融拉锥光纤的液体折射率传感器[J]. 光学学报, 2009, 29(7): 1956-1961.

【16】MIAO Yin-ping, LIU Bo, ZHAO Qi-da. Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating[J]. Optical Fiber Technology, 2009, 15(3): 233-236.

引用该论文

HE Ru-shuang,QIAN Meng,HU Xue-fang,TAO Wei-dong,ZHANG Lin-feng. Cascaded LPFG Temperature and Refractive Index Sensing Method Based on FBG Filter[J]. ACTA PHOTONICA SINICA, 2016, 45(1): 0106005

何如双,钱梦,胡雪芳,陶卫东,张玲芬. FBG滤波的级联LPFG温度和折射率传感装置[J]. 光子学报, 2016, 45(1): 0106005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF