首页 > 论文 > 发光学报 > 37卷 > 7期(pp:829-835)

中高温GaN插入层厚度对蓝光LED光电性能的影响

Effect of Medium-high Temperature Interlayer Thickness on The Optical and Electrical Properties of Blue Light Emitting Diodes

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用金属有机气相化学沉积(MOCVD)技术在蓝宝石图形衬底上生长GaN基蓝光LED, 并系统研究了不同中高温GaN插入层厚度对其光电性能的影响。利用芯片测试仪和原子力显微镜(AFM)表征了GaN基蓝光LED外延片的光电性能以及表面形貌。当中高温GaN插入层厚度从60 nm增加至100 nm时, V形坑尺寸从70~110 nm增加至110~150 nm。当注入电流为20 mA时, LED芯片的光功率从21.9 mW增加至24.1 mW; 当注入电流为120 mA时, LED芯片的光功率从72.4 mW增加至82.4 mW。对V形坑尺寸调控LED光电性能的相关物理机制进行了分析, 结果表明: 增大V形坑尺寸有利于增加空穴注入面积和注入效率, 进而提高LED器件的光功率。

Abstract

GaN-based blue light emitting diodes (LEDs) were grown on patterned sapphire substrates by metal-organic chemical vapor deposition (MOCVD) method, and the medium-high temperature GaN interlayer with different thickness was grown between the multiple quantum wells layer and n-GaN layer. The Optical and electrical properties and surface morphology of LEDs were characterized by LED test system and atomic force microscopy(AFM), respectively. When the thickness of the medium-high temperature GaN interlayer increases from 60 nm to 100 nm, the size of V-pit enlarges from 70-110 nm to 110-150 nm. Meanwhile, the light output power of the chip increases from 21.9 mW to 24.1 mW with the injection current of 20 mA, and 72.4 mW to 82.4 mW with the injection current of 120 mA. In order to better illustrate the influence mechanism of the size of V-pits on the photoelectric properties of the LEDs, the schematic structures with different V-shaped pit sizes are demonstrated. The analyzing results for the LED samples show that the increase of the V-pit size is beneficial to enhance the hole injection area and injection efficiency. Thus, the light output power of the LED device is improved.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN383+.1;TN364+.2

DOI:10.3788/fgxb20163707.0829

所属栏目:器件制备及器件物理

基金项目:国家自然科学基金(21471111,61475110,61404089,61504090); 山西省基础研究项目(2014011016-6, 2014021019-1,2015021103); 电子薄膜与集成器件国家重点实验室开放课题(KFJJ201406); 山西省科技创新重点团队项目(2012041011); 山西省高等学校科技创新项目(2015131); 浙江省重点科技创新团队(2011R50012); 浙江省重点实验室项目(2013E10022)资助

收稿日期:2016-02-23

修改稿日期:2016-03-31

网络出版日期:--

作者单位    点击查看

刘青明:太原理工大学 新材料界面科学与工程教育部和山西省重点实验室, 山西 太原 030024太原理工大学 新材料工程技术研究中心, 山西 太原 030024
卢太平:太原理工大学 新材料界面科学与工程教育部和山西省重点实验室, 山西 太原 030024太原理工大学 新材料工程技术研究中心, 山西 太原 030024
朱亚丹:太原理工大学 新材料界面科学与工程教育部和山西省重点实验室, 山西 太原 030024太原理工大学 新材料工程技术研究中心, 山西 太原 030024
韩 丹:太原理工大学 新材料界面科学与工程教育部和山西省重点实验室, 山西 太原 030024太原理工大学 新材料工程技术研究中心, 山西 太原 030024
董海亮:太原理工大学 新材料界面科学与工程教育部和山西省重点实验室, 山西 太原 030024太原理工大学 新材料工程技术研究中心, 山西 太原 030024
尚 林:太原理工大学 新材料界面科学与工程教育部和山西省重点实验室, 山西 太原 030024太原理工大学 新材料工程技术研究中心, 山西 太原 030024
赵广洲:太原理工大学 新材料界面科学与工程教育部和山西省重点实验室, 山西 太原 030024太原理工大学 新材料工程技术研究中心, 山西 太原 030024
赵 晨:太原理工大学 新材料界面科学与工程教育部和山西省重点实验室, 山西 太原 030024太原理工大学 新材料工程技术研究中心, 山西 太原 030024
周小润:太原理工大学 新材料界面科学与工程教育部和山西省重点实验室, 山西 太原 030024太原理工大学 新材料工程技术研究中心, 山西 太原 030024
翟光美:太原理工大学 新材料界面科学与工程教育部和山西省重点实验室, 山西 太原 030024太原理工大学 新材料工程技术研究中心, 山西 太原 030024
贾志刚:太原理工大学 新材料界面科学与工程教育部和山西省重点实验室, 山西 太原 030024太原理工大学 新材料工程技术研究中心, 山西 太原 030024
梁 建:太原理工大学 新材料界面科学与工程教育部和山西省重点实验室, 山西 太原 030024太原理工大学 新材料工程技术研究中心, 山西 太原 030024
马淑芳:太原理工大学 新材料界面科学与工程教育部和山西省重点实验室, 山西 太原 030024太原理工大学 新材料工程技术研究中心, 山西 太原 030024
薛晋波:太原理工大学 新材料界面科学与工程教育部和山西省重点实验室, 山西 太原 030024太原理工大学 新材料工程技术研究中心, 山西 太原 030024
李学敏:太原理工大学 新材料界面科学与工程教育部和山西省重点实验室, 山西 太原 030024太原理工大学 新材料工程技术研究中心, 山西 太原 030024
许并社:太原理工大学 新材料界面科学与工程教育部和山西省重点实验室, 山西 太原 030024太原理工大学 新材料工程技术研究中心, 山西 太原 030024

联系人作者:刘青明(497258449@qq.com)

备注:刘青明(1990-), 男, 山东临沂人, 硕士研究生, 2012年于济南大学获得学士学位, 主要从事GaN基蓝光LED外延及器件的研究。

【1】DUPUIS R D, KRAMES M R. History, development, and applications of high-brightness visible light-emitting diodes [J]. J. Lightwave Technol., 2008, 26(9):1154-1171.

【2】LU T P, LI S T, ZHANG K, et al.. The advantage of blue InGaN multiple quantum wells light-emitting diodes with p-AlInN electron blocking layer [J]. Chin. Phys. B, 2011, 20(9):098503-1-4.

【3】李正凯,严启荣,罗长得,等. GaN垒层厚度渐变的双蓝光波长发光二极管 [J]. 光子学报, 2013, 42(7):757-762.
LI Z K, YAN Q R, LUO C D, et al.. Dual-blue wavelength light-emitting diodes based on varied GaN barrier thickness [J]. Acta Photon. Sinica, 2013, 42(7):757-762. (in Chinese)

【4】SHANG L, LU T P, ZHAI G M, et al.. The evolution of a GaN/sapphire interface with different nucleation layer thickness during two-step growth and its influence on the bulk GaN crystal quality [J]. RSC Adv., 2015, 5(63):51201-51207.

【5】NAKAMURA S, SENOH M, IWASA N, et al.. High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes [J]. Appl. Phys. Lett., 1995, 67(13):1868-1870.

【6】PEARTON S J, ZOLPER J C, SHUL R J, et al.. GaN: processing, defects, and devices [J]. J. Appl. Phys., 1999, 86(1):1-78.

【7】LU L, GAO Z Y, SHEN B, et al.. Microstructure and origin of dislocation etch pits in GaN epilayers grown by metal organic chemical vapor deposition [J]. J. Appl. Phys. 2008, 104(12):123525-1-4.

【8】BROWN P D. TEM assessment of GaN epitaxial growth [J]. J. Cryst. Growth, 2000, 210(1-3):143-150.

【9】PONCE F A, MAJOR Jr J S, PLANO W E, et al.. Crystalline structure of AlGaN epitaxy on sapphire using AlN buffer layers [J]. Appl. Phys. Lett., 1994, 65(18):2302-2304.

【10】LU T P, LI S T, LIU C, et al.. Advantages of GaN based light-emitting diodes with a p-InGaN hole reservoir layer [J]. Appl. Phys. Lett., 2012, 100(14):141106-1-3.

【11】LIANG M M, WENG G E, ZHANG J Y, et al.. Influence of barrier thickness on the structural and optical properties of InGaN/GaN multiple quantum wells [J]. Chin. Phys. B, 2014, 23(5):054211-1-5.

【12】PAN C C, YAN Q M, FU H Q, et al.. High optical power and low-efficiency droop blue light-emitting diodes using compositionally step-graded InGaN barrier [J]. Electron. Lett., 2015, 51(15):1187-1189.

【13】CHUNG H J, CHOI R J, KIM M H, et al.. Improved performance of GaN-based blue light emitting diodes with InGaN/GaN multilayer barriers [J]. Appl. Phys. Lett., 2009, 95(24):241109-1-3.

【14】胡金勇,黄华茂,王洪,等. ITO表面粗化提高GaN基LED芯片出光效率 [J]. 发光学报, 2014, 35(5):613-617.
HU J Y, HUANG H M, WANG H, et al.. Light-output enhancement of GaN-based light-emitting diodes with surface textured ITO [J]. Chin. J. Lumin., 2014, 35(5):613-617. (in Chinese)

【15】HANGLEITER A, HITZEL F, NETZEL C, et al.. Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency [J]. Phys. Rev. Lett., 2005, 95(12):127402-1-4.

【16】CHICHIBU S F, UEDONO A, ONUMA T, et al.. Origin of defect-insensitive emission probability in In-containing (Al, In, Ga) N alloy semiconductors [J]. Nat. Mater., 2006, 5(10):810-816.

【17】吴小明. 含V形坑的Si衬底GaN基蓝光LED发光性能研究 [D]. 南昌:南昌大学, 2014.
WU X M. Study on The Luminescence Properties of V-pit-containing GaN Based Blue LEDs on Si Substrate [D]. Nanchang: Nanchang University, 2014. (in Chinese)

【18】TOMIYA S, KANITANI Y, TANAKA S, et al.. Atomic scale characterization of GaInN/GaN multiple quantum wells in V-shaped pits [J]. Appl. Phys. Lett., 2011, 98(18):181904-1-3.

【19】OKADA N, KASHIHARA H, SUGIMOTO K, et al.. Controlling potential barrier height by changing V-shaped pit size and the effect on optical and electrical properties for InGaN/GaN based light-emitting diodes [J]. J. Appl. Phys., 2015, 117(2):025708.

【20】KIM J, CHO Y H, KO D S, et al.. Influence of V-pits on the efficiency droop in InGaN/GaN quantum wells [J]. Opt. Express, 2014, 22(S3):A857-A866.

【21】SONG T L. Strain relaxation due to V-pit formation in InxGa1-xN/GaN epilayers grown on sapphire [J]. J. Appl. Phys., 2005, 98(8):084906.

【22】LU T P, MA Z G, DU C H, et al.. Temperature-dependent photoluminescence in light-emitting diodes [J]. Sci. Rep., 2014, 4:6131.

【23】CHEUNG S K, CHEUNG N W. Extraction of Schottky diode parameters from forward current-voltage characteristics [J]. Appl. Phys. Lett., 1986, 49(2):85-87.

【24】QUAN Z J, WANG L, ZHENG C D, et al.. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes [J]. J. Appl. Phys., 2014, 116(18):183107.

【25】HSU C C, WU C K, LI C K, et al.. 3D finite element strain analysis of V-shaped pits in light emitting diodes [C]. Proceedings of The International Conference on Numerical Simulation of Optoelectronic Devices, China Taipei: Taipei, 2015:7-8.

【26】ZHAO Y K, YUN F, WANG S, et al. Modulating dual-wavelength multiple quantum wells in white light emitting diodes to suppress efficiency droop and improve color rendering index [J]. J. Appl. Phys., 2015, 118(14):145702.

【27】SCHENK H P D, VENNéGUèS P, TOTTEREAU O, et al.. Three-dimensionally nucleated growth of gallium nitride by low-pressure metalorganic vapour phase epitaxy [J]. J. Cryst. Growth, 2003, 258(3-4):232-250.

【28】郭瑞花,卢太平,贾志刚,等. 界面形核时间对GaN薄膜晶体质量的影响 [J]. 物理学报, 2015, 64(12):123705-1-6.
GUO R H, LU T P, JIA Z G, et al.. Effect of interface nucleation time of the GaN nucleation layer on the crystal quality of GaN film [J]. Acta Phys. Sinica, 2015, 64(12):123705-1-6. (in Chinese)

【29】SHIOJIRI M, CHUO C C, HSU J T, et al.. Structure and formation mechanism of V defects in multiple InGaN/GaN quantum well layers [J]. J. Appl. Phys., 2006, 99(7):073505.

【30】SON K S, KIM D G, CHO H K, et al.. Formation of V-shaped pits in GaN thin films grown on high temperature GaN [J]. J. Cryst. Growth, 2004, 261(1):50-54.

【31】WU X M, LIU J L, QUAN Z J, et al.. Electroluminescence from the sidewall quantum wells in the V-shaped pits of InGaN light emitting diodes [J]. Appl. Phys. Lett., 2014, 104(22):221101-1-5.

【32】CAO X A, STOKES E B, SANDVIK P M, et al.. Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes [J]. IEEE. Electron Dev. Lett., 2002, 23(9):535-537.

【33】QUAN Z, LIU J L, FANG F, et al.. A new interpretation for performance improvement of high-efficiency vertical blue light-emitting diodes by InGaN/GaN superlattices [J]. J. Appl. Phys., 2015, 118(19):193102.

【34】LI Y F, YUN F, SU X L, et al.. Deep hole injection assisted by large V-shape pits in InGaN/GaN multiple-quantum-wells blue light-emitting diodes [J]. J. Appl. Phys., 2014, 116(12):123101.

【35】LI Y F, YUN F, SU X L, et al.. Carrier injection modulated by V-defects in InGaN/GaN multiple-quantum-well blue LEDs [J]. Jpn. J. Appl. Phys., 2014, 53(11):112103.

【36】ZHAO Y K, LI Y F, HUANG Y P, et al.. Efficiency droop suppression in GaN-based light-emitting diodes by chirped multiple quantum well structure at high current injection [J]. Chin. Phys. B, 2015, 24(5):056806-1-5.

引用该论文

LIU Qing-ming,LU Tai-ping,ZHU Ya-dan,HAN Dan,DONG Hai-liang,SHANG Lin,ZHAO Guang-zhou,ZHAO Chen,ZHOU Xiao-run,ZHAI Guang-mei,JIA Zhi-gang,LIANG Jian,MA Shu-fang,XUE Jin-bo,LI Xue-min,XU Bing-she. Effect of Medium-high Temperature Interlayer Thickness on The Optical and Electrical Properties of Blue Light Emitting Diodes[J]. Chinese Journal of Luminescence, 2016, 37(7): 829-835

刘青明,卢太平,朱亚丹,韩 丹,董海亮,尚 林,赵广洲,赵 晨,周小润,翟光美,贾志刚,梁 建,马淑芳,薛晋波,李学敏,许并社. 中高温GaN插入层厚度对蓝光LED光电性能的影响[J]. 发光学报, 2016, 37(7): 829-835

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF