首页 > 论文 > 光谱学与光谱分析 > 36卷 > 2期(pp:445-448)

基于激光诱导时间分辨荧光的原油识别方法研究

Discrimination of Crude Oil Samples Using Laser-Induced Time-Resolved Fluorescence Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在柴油、 汽油、 重质燃料油等成品油和原油等溢油油源的区分方面, 荧光光谱结合模式识别手段得到了广泛的应用。 传统的三维荧光光谱分析方法虽然能够获得溢油样品丰富的成分信息, 但难以适应现场应用的要求, 目前还停留在实验室检测的阶段。 发展适用于现场应用的原油识别方法, 对于海洋溢油污染的快速响应与处理意义重大。 面向激光雷达的需要, 发展了一种基于激光诱导时间分辨荧光手段、 结合支持向量机(SVM)模型的原油识别方法, 从时间和波长两个不同维度出发, 通过对时间窗口和波长范围的选取进行优化, 获得了理想的油种识别准确率。 实验结果表明通过选取ICCD探测延时为54~74 ns可以将分类正确率从全谱线数据的83.3%提高到88.1%。 通过选取波长范围为387.00~608.87 nm的谱线数据, 可将疑似油种的分类正确率从全谱线数据的84%提高到100%。 激光荧光雷达在实际工作中, 受波浪、 运载平台晃动等因素的影响, 探测延时会出现一定的波动。 本文介绍的分类识别方法通过时间和波长两个维度的筛选, 更加适用于现场探测数据的识别, 并进一步凸显了原油时间分辨荧光光谱特征, 为疑似油种分类识别过程中数据量的压缩提供了重要依据。

Abstract

The Laser-induced fluorescence spectra combined with pattern recognition method has been widely applied in discrimination of different spilled oil, such as diesel, gasoline, and crude oil. However, traditional three-dimension fluorescence analysis method, which is not adapted to requirement of field detection, is limited to laboratory investigatio ns. The development of oil identification method for field detection is significant to quick response and operation of oil spill. In this paper, a new method based on laser-induced time-resolved fluorescence combined with support vector machine (SVM) model was introduced to discriminate crude oil samples. In this method, time-resolved spectra data was descended into two dimensions with selecting appropriate range in time and wavelength domains respectively to form a SVM data base. It is found that the classification accurate rate increased with an appropriate selection. With a selected range from 54 to 74 ns in time domain, the classification accurate rate has been increased from 83.3% (without selection) to 88.1%. With a selected wavelength range of 387.00~608.87 nm, the classification accurate rate of suspect oil was improved from 84% (without selection) to 100%. Since the detection delay of fluorescence lidar fluctuates due to wave and platform swing, the identification method with optimizing in both time and wavelength domains could offer a better flexibility for field applications. It is hoped that the developed method could provide some useful reference with data reduction for classification of suspect crude oil in the future development.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O433.4

DOI:10.3964/j.issn.1000-0593(2016)02-0445-04

基金项目:国家自然科学基金项目(41406111)和国家海洋局海洋遥测工程技术研究中心创新青年基金项目(2013003)资助

收稿日期:2014-10-31

修改稿日期:2015-02-25

网络出版日期:--

作者单位    点击查看

韩晓爽:中国海洋大学光学光电子实验室, 山东 青岛 266100内蒙古大学电子信息工程学院, 内蒙古 呼和浩特 010021
刘德庆:中国海洋大学光学光电子实验室, 山东 青岛 266100
栾晓宁:中国海洋大学光学光电子实验室, 山东 青岛 266100
郭金家:中国海洋大学光学光电子实验室, 山东 青岛 266100
刘永信:内蒙古大学电子信息工程学院, 内蒙古 呼和浩特 010021
郑荣儿:中国海洋大学光学光电子实验室, 山东 青岛 266100

联系人作者:韩晓爽(xiaoshuanghan@126.com)

备注:韩晓爽, 1990年生, 内蒙古大学信息科学与工程学院硕士研究生

【1】Brown C E, Fingas M F. Marine Pollution Bulletin, 2003, 47(9): 477.

【2】LI Xiao-long, ZHAO Chao-fang, QI Min-jun, et al(李晓龙, 赵朝方, 齐敏珺, 等). Periodical of Ocean University of China(中国海洋大学学报), 2010, (8): 145.

【3】ZHAO Chao-fang, LI Xiao-long, MA You-jun(赵朝方, 李晓龙, 马佑军). Infrared and Laser Engineering(红外与激光工程), 2011, 40(7): 1263.

【4】Leifer I, Lehr W J, Beatty D S, et al. Remote Sensing of Environment, 2012, 124: 185.

【5】Brown C E, Fingas M F. Marine Pollution Bulletin, 2003, 47(9): 477.

【6】Li J, Fuller S, Cattle J, et al. Analytica Chimica Acta, 2004, 514(1): 51.

【7】Brown C E, Marois R, Fingas, et al. International Oil Spill Conference, 2001. 917.

【8】LIN Bin, AN Ju-bai(林 彬, 安居白). Marine Environmental Science(海洋环境科学), 2004, 23(1): 47.

【9】Christensen J H, Hansen A B, Mortensen J, et al. Analytical Chemistry, 2005, 77(7): 2210.

【10】Alostaz M, Biggar K, Donahue R, et al. Journal of Environmental Engineering and Science, 2008, 7(3): 183.

【11】LIU De-qing, LUAN Xiao-ning, HAN Xiao-shuang, et al (刘德庆, 栾晓宁, 韩晓爽, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2015, 35(6): 1582.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF