首页 > 论文 > 光学学报 > 38卷 > 3期(pp:328006--1)

等离子体共振光纤光栅生物传感器综述

Review on Plasmonic Optical Fiber Grating Biosensors

郭团  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

等离子体共振传感技术是当今实用化最强、最有可能实现单分子检测的生物医学检测技术之一。高灵敏度的等离子体共振传感技术与细如发丝的光纤载体相结合,为现代生物传感研究提供了一种可实现在体原位检测的全新方法。系统介绍了基于光纤光栅的等离子体共振生物医学传感机理与关键技术,通过能量汇聚的表面共振场实现了10-6~10-8 RIU的超高精度折射率测量,为生物医学提供了超低检出限(pM~fM量级)、特异性及原位实时检测新方法。此外,此类传感器还可提供绝对式/相对式多参量同时检测手段,能有效消除环境干扰影响,确保传感器的稳定性和可靠性。最后,回顾了近些年等离子体共振光纤光栅生物医学传感领域取得的研究进展(包括蛋白、血糖、微生物、气体等样本原位检测),并进行总结和展望。

Abstract

Plasmonics is one of the most powerful technology for biomedical detection which may realize single molecule detection. The combination of high sensitive plasmonic technology and flexible fiber-optic sensors opens up a multitude of opportunities for cost-effective and relatively simple-to-implement bio-sample detection. The miniaturized size and remote operation ability offer them a multitude of opportunities for single-point sensing in hard-to-reach spaces, even possibly in vivo. We briefly review the principle of fiber grating based plasmonic biosensors, and the key properties to achieve unprecedented sensitivities (10-6-10-8 RIU) and limits of detection (pM-fM). Meanwhile, we also demonstrate such sensors provide very controllable cross-sensitivities, absolute and relative measurements of various parameters, and their self-calibration ability to the environmental cross-talk (especially to the temperature fluctuations). Finally, we briefly review the recent developments of the surface and localized affinity studies of the biomolecules for real life problems, the electrochemical actives of electroactive biofilms for clean energy resources and the ultra-highly sensitive sensing in gas.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TU113.6+68;TM923.01

DOI:10.3788/aos201838.0328006

所属栏目:“现代光信息传感”专题

基金项目:国家优秀青年科学基金(61722505)、广东省特支计划科技创新青年拔尖人才项目(2014TQ01X539)、广州市产学研协同创新重大专项(201604030084)

收稿日期:2017-10-31

修改稿日期:2017-12-07

网络出版日期:--

作者单位    点击查看

郭团:暨南大学光子技术研究院, 广东 广州 510632

联系人作者:郭团(tuanguo@jnu.edu.cn)

备注:郭团(1979—),男,博士,教授,博士生导师,主要从事光纤传感器、生物光子学方面的研究。

【1】Kretschmann E, Raether H. Radiative decay of non radiative surface plasmon excited by light[J]. Zeitschrift für Naturforschung A, 1968, 23(12): 2135-2136.

【2】Hecht B, Bielefeldt H, Novotny L, et al. Local excitation, scattering, and interference of surface plasmons[J]. Physical Review Letters, 1996, 77(9): 1889.

【3】Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: review[J]. Sensors & Actuators B Chemical, 1999, 54(1/2): 3-15.

【4】Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature 2003, 424(6950): 824-830.

【5】Taylor H. Bending effects in optical fibers[J]. Journal of Lightwave Technology, 1984, 2(5): 617-628.

【6】Gupta B D, Dodeja H, Tomar A K. Fibre-optic evanescent field absorption sensor based on a U-shaped probe[J]. Optical & Quantum Electronics, 1996, 28(11): 1629-1639.

【7】Sharma A K, Jha R, Gupta B D. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review[J]. IEEE Sensors Journal, 2007, 7(8): 1118-1129.

【8】Gupta B D, Verma R K. Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications[J]. Journal of Sensors, 2009, 2009(2): 12.

【9】Pollet J, Delport F, Janssen K P F, et al. Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions[J]. Biosensors & Bioelectronics, 2009, 25(4): 864-869.

【10】Baldini F, Brenci M, Chiavaioli F, et al. Optical fibre gratings as tools for chemical and biochemical sensing[J]. Analytical & Bioanalytical Chemistry, 2012, 402(1): 109-116.

【11】Caucheteur C, Guo T, Albert J. Review of recent plasmonic fiber optic biochemical sensors: improving the limit of detection[J]. Analytical & Bioanalytical Chemistry, 2015, 407(14): 3883-3897.

【12】Othonos A, Kalli K. Fiber Bragg gratings: fundamentals and applications in telecommunications and sensing[M]. London: Artech House, 1999.

【13】Erdogan T. Fiber grating spectra[J]. Journal of Lightwave Technology, 1997, 15(8): 1277-1294.

【14】Carver G E, Farkas D L, Porque J, et al. Visible wavelength fiber Bragg grating arrays for high speed biomedical spectral sensing[C]∥Proceedings of the Advanced Photonics & Renewable Energy Congress, Optical Society of America Technical Digest, 2010: BthB5.

【15】Becker M, Elsmann T, Schwuchow A, et al. Fiber Bragg gratings in the visible spectral range with ultraviolet femtosecond laser inscription[J]. Photonics Technology Letters, 2014, 26(16): 1653-1656.

【16】Lyons E R, Lee H P. Demonstration of an etched cladding fiber Bragg grating filter with reduced tuning force requirement[J]. Photonics Technology Letters, 1999, 11(12): 1626-1628.

【17】Liu X, Zhang X, Cong J, Xu J, et al. Demonstration of etched cladding fiber Bragg grating-based sensors with hydrogel coating[J]. Sensors & Actuators B Chemical, 2003, 96(1): 468-472.

【18】Iadicicco A, Cusano A, Cutolo A, et al. Thinned fiber Bragg gratings as high sensitivity refractive index sensor[J]. Photonics Technology Letters, 2004, 16(4): 1149-1151.

【19】Zhou K, Chen X, Zhang L, et al. Implementation of optical chemsensors based on HF-etched fibre Bragg grating structures[J]. Measurement Science & Technology, 2006, 17(5): 1140.

【20】Chen N, Yun B, Wang Y, et al. Theoretical and experimental study on etched fiber Bragg grating cladding mode resonances for ambient refractive index sensing[J]. Journal of the Optical Society of America B, 2007, 24(3): 439-445.

【21】Sheng D R, Zhou H, Chen J, et al. Design and characteristics of refractive index sensor based on thinned and microstructure fiber Bragg grating[J]. Applied Optics, 2008, 47(4): 504-511.

【22】Kim K T, Kim I S, Lee C H, et al. A temperature-insensitive cladding-etched fiber Bragg grating using a liquid mixture with a negative thermo-optic coefficient[J]. Sensors, 2012, 12(6): 7886-7892.

【23】Luo B B, Zhao M F, Zhou X J, et al. Etched fiber Bragg grating for refractive index distribution measurement[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(17): 2777-2780.

【24】Zhong N, Liao Q, Zhu X, et al. High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation[J]. Applied Optics, 2013, 52(7): 1432-1440.

【25】Zhong N, Liao Q, Zhu X, et al. Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor[J]. Analytical Chemistry, 2014, 86(18): 9278-9285.

【26】Schroeder K, Ecke W, Mueller R, et al. A fibre Bragg grating refractometer[J]. Measurement Science & Technology, 2001, 12(7): 757.

【27】Tien C L, Chen H W, Liu W F, et al. Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film[J]. Thin Solid Films, 2011, 516(16), 5360-5363.

【28】Yang M, Dai J, Li X, et al. Side-polished fiber Bragg grating refractive index sensor with TbFeCo magnetoptic thin film[J]. Journal of Applied Physics, 2010, 108(3): 033102.

【29】Dai J, Yang M, Chen Y, et al. Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials[J]. Optics Express, 2011, 19(7): 6141-6148.

【30】Liao C, Wang Q, Xu L, et al. D-shaped fiber grating refractive index sensor induced by an ultrashort pulse laser[J]. Applied Optics, 2016, 55(7): 1525-1529.

【31】Ying Y, Si G Y, Luan F J, et al. Recent research progress of optical fiber sensors based on D-shaped structure[J]. Optics & Laser Technology, 2017, 90: 149-157.

【32】Hill K, Meltz G. Fiber Bragg grating technology: fundamentals and overview[J]. Journal of Lightwave Technology. 1997, 15(8): 1263-1276.

【33】Sipe J E, Erdogan T. Tilted fiber phase gratings[J]. Journal of the Optical Society of America A, 1996, 13(2): 296-313.

【34】Guo T, Liu F, Guan B O, et al. Tilted fiber grating mechanical and biochemical sensors[J]. Optics & Laser Technology, 2016, 78: 19-33.

【35】Laffont G, Ferdinand P. Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry[J]. Measurement Science & Technology, 2001, 12(7): 765.

【36】Guo T, Gonza'lez-Vila A, Mégret P, et al. Plasmonic optical fiber grating immunosensing: a review[J]. Sensors, 2017, 17(12): 2732.

【37】Caucheteur C, Mégret P. Demodulation technique for weakly tilted fiber Bragg grating refractometer[J]. Photonics Technology Letters, 2005, 17(12): 2703-2705.

【38】Chan C F, Chen C, Jafari A, et al. Optical fiber refractometer using narrowband cladding-mode resonance shifts[J]. Applied Optics, 2007, 46(7): 1142-1149.

【39】Chen C, Albert J. Strain-optic coefficients of individual cladding modes of singlemode fibre: theory and experiment[J]. Electronics Letters, 2006, 42(18): 1027-1028.

【40】Caucheteur C, Guo T, Liu F, et al. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs[J]. Nature Communications, 2016, 7: 13371.

【41】Chen X, Xu J, Zhang X, et al. Wide range refractive index measurement using a multi-angle tilted fiber Bragg grating[J]. Photonics Technology Letters. 2017, 29(9): 719-722.

【42】Thomas J, Jovanovic N, Becker R G, et al. Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra[J]. Optics Express, 2011, 19(1): 325-341.

【43】Thomas J, Jovanovic N, Krmer R G, et al. Cladding mode coupling in highly localized fiber Bragg gratings II: complete vectorial analysis[J]. Optics Express, 2012, 20(19): 21434-21449.

【44】Chah K, Voisin V, Kinet D, et al. Surface plasmon resonance in eccentric femtosecond-laser-induced fiber Bragg gratings[J]. Optics Letters, 2014, 39(24): 6887-6690.

【45】Rong Q, Qiao X, Guo T, et al. Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding[J]. Optics Letters, 2014, 39(23): 6616-6619.

【46】Feng D, Albert J, Qiao X. Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements[J]. Optics Letters, 2016, 41(6): 1201-1204.

【47】Chah K, Kinet D, Caucheteur C. Negative axial strain sensitivity in gold-coated eccentric fiber Bragg gratings[J]. Scientific Reports, 2016, 6: 38042.

【48】Zhou K, Zhang L, Chen X, et al. Low thermal sensitivity grating devices based on ex-45° tilting structure capable of forward-propagating cladding modes coupling[J]. Journal of Lightwave Technology, 2006, 24(12): 5087-5094.

【49】Suo R, Chen X, Zhou K, et al. In-fibre directional transverse loading sensor based on excessively tilted fibre Bragg gratings[J]. Measurement Science & Technology, 2009, 20(3): 034015.

【50】Zhou K, Zhang L, Chen X, et al. Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of >80° tilted structures[J]. Optics Letters. 2006, 31(9): 1193-1195.

【51】Jiang B, Yin G, Zhou K, et al. Graphene-induced unique polarization tuning properties of excessively tilted fiber grating[J]. Optics Letters, 2016, 41(23): 5450-5453.

【52】Yan Z, Wang H, Wang C, et al. Theoretical and experimental analysis of excessively tilted fiber Bragg gratings[J]. Optics Express, 2016, 24(17): 12107-12115.

【53】Vengsarkar A M, Lemaire P J, Judkins J B, et al. Long-period fiber gratings as band-rejection filters[J]. Journal of Lightwave Technology, 1996, 14(1): 58-65.

【54】Bhatia V, Vengsarkar A M. Optical fiber long-period grating sensors[J]. Optics Letters, 1996, 21(9): 692-694.

【55】Heather J P, Alan D K, Frank B. Analysis of the response of long period fiber gratings to external index of refraction[J]. Journal of Lightwave Technology, 1998, 16(9): 1606-1612.

【56】Chong J H, Ping S, Haryono H, et al. Measurements of refractive index sensitivity using long-period grating refractometer[J]. Optics Communications, 2004, 229(1/2/3/4/5/6): 65-69.

【57】Tsuda H, Urabe K. Characterization of long-period grating refractive index sensors and their applications[J]. Sensors, 2009, 9(6): 4559-4571.

【58】Patrick H J, Chang C, Vohra S T. Long period fibre gratings for structural bend sensing[J]. Electronics Letters, 1998, 34(18): 1773-1775.

【59】Guo T. Fibergrating-assisted surface plasmon resonance for biochemical and electrochemical sensing[J]. Journal of Lightwave Technology, 2017, 35(16): 3323-3333.

【60】Chiavaioli F, Gouveia C A J, Jorge P A S, et al. Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors[J]. Biosensors, 2017, 7(2): 23.

【61】Li Z, Shen J, Ji Q, et al. Turning the resonance of the excessively tilted LPFG assisted surface plasmon polaritons: optimum design rules for ultra-sensitive refractometric sensor[J]. IEEE Photonics Journal, 2018.

【62】Zhang Z, Guo T, Zhang X, et al. Plasmonic fiber-optic vector magnetometer[J]. Applied Physics Letters, 2016, 108(10): 101105.

【63】Hill K O, Malo B, Bilodeau F, et al. Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Applied Physics Letters, 1993, 62(10): 1035-1037.

【64】Malo B, Hill K O, Bilodeau F, et al. Point-by-point fabrication of micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive-index modification techniques[J]. Electronics Letters, 1993, 29(18): 1668-1669.

【65】Marshall G D, Williams R J, Jovanovic N, et al. Point-by-point written fiber-Bragg gratings and their application in complex grating designs[J]. Optics Express, 2010, 18(19): 19844-19859.

【66】Meltz G, Morey W W, Glen W H. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Optics Letters, 1989, 14(15): 823-825.

【67】Limberger H G, Fonjallaz P Y, Lambelet P, et al. Optical low-coherence reflectometry (OLCR) characterization of efficient Bragg gratings in optical fiber[J]. Photosensitivity and Self-Organization in Optical Fibers and Waveguides, 1993, 2044: 272-283.

【68】Cheng S F, Chau L K. Colloidal gold-modified optical fiber for chemical and biochemical sensing[J]. Analytical Chemistry, 2003, 75(1): 16-21.

【69】Tang J L, Cheng S F, Hsu W. Tet al. Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating[J]. Sensors & Actuators B Chemical, 2006, 119(1): 105-109.

【70】Ni W H, Chen H J, Kou X S, et al. Optical fiber-excited surface plasmon resonance spectroscopy of single and ensemble gold nanorods[J]. Journal of Physical Chemistry C, 2008, 112(22): 8105-8109.

【71】Cao J, Tu M H, Sun T, et al. Wavelength-based localized surface plasmon resonance optical fiber biosensor[J]. Sensors & Actuators B Chemical, 2013, 181(5): 611-619.

【72】Lepinay S, Staff A, Ianoul A, et al. Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles[J]. Biosensors & Bioelectronics, 2014, 52: 337-344.

【73】Sanders M, Lin Y, Wei J, et al. An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers[J]. Biosensors & Bioelectronics, 2014, 61(20): 95-101.

【74】Shi S, Wang L, Wang Aet al. Bioinspired fabrication of optical fiber SPR sensors for immunoassays using polydopamine-accelerated electroless plating[J]. Journal of Materials Chemistry C, 2016, 4(32): 7554-7562.

【75】Feng D, Zhou W, Qiao X, et al. High resolution fiber optic surface plasmon resonance sensors with single-sided gold coatings[J]. Optics Express, 2016, 24(15): 16454-16464.

【76】Audino R, Destefanis G, Gorgellino F, et al. Interface behaviour evaluation in Au/Cr, Au/Ti and Au/Pd/Ti thin films by means of resistivity and stylus measurements[J]. Thin Solid Films, 1975, 36(2): 343-347.

【77】Guzman L, Miotello A, Checchetto R, et al. Ion beam-induced enhanced adhesion of gold films deposited on glass[J]. Surface and Coating Technology, 2002, 159: 558-562.

【78】Chen W, Tseng Y, Hsieh S, et al. Silanization of solid surfaces via mercaptopropylsilatrane: a new approach of constructing gold colloid monolayers[J]. Royal Society of Chemistry Advances, 2014, 4(87): 46527-46535.

【79】vorcˇík V, Siegel J, utta P, et al. Annealing of gold nanostructures sputtered on glass substrate[J]. Applied Physics A, 2011, 102(3): 605-610.

【80】Antohe I, Schouteden K, Goos P, et al. Thermal annealing of gold coated fiber optic surfaces for improved plasmonic biosensing[J]. Sensors and Actuators B: Chemical, 2016, 229: 678-685.

【81】Naik G V, Kim J, Boltasseva A. Oxides and nitrides as alternative plasmonic materials in the optical range[J]. Optics Express, 2011, 1(6): 1090-1099.

【82】Daems D, Peeters B, Delport F, et al. Identification and quantification of celery allergens using fiber optic surface plasmon resonance PCR[J]. Sensors, 2017, 17(8): 1754.

【83】Zhu X, Wang R, Zhou X, et al. Free-energy-driven lock/open assembly-based optical DNA sensor for cancer-related microRNA detection with a shortened time-to-result[J]. Applied Materials Interfaces, 2017, 9(31): 25789-25795.

【84】Wink T, van Zuilen S J, Bult A, et al. Self-assembled monolayers for biosensors[J]. Analyst, 1997, 122(4): 43R-50R.

【85】Narsaiah K, Jha S N, Bhardwaj R, et al. Optical biosensors for food quality and safety assurance - a review[J]. Journal of Food Science and Technology, 2012, 49(4): 383-406.

【86】Ta D T, Guedens W, Vranken T, et al. Enhanced biosensor platforms for detecting the atherosclerotic biomarker VCAM1 based on bioconjugation with uniformly oriented VCAM1-targeting nanobodies[J]. Biosensors, 2016, 6(3): 34.

【87】Ferrigno P K. Non-antibody protein-based biosensors[J]. Essays in Biochemistry, 2016, 60: 19-25.

【88】Liu L, Zhou X, Lu Y, et al. Facile screening of potential xenoestrogens by an estrogen receptor-based reusable optical biosensor[J]. Biosensors & Bioelectronics, 2017, 97: 16-20.

【89】Klantsataya E, Jia P, Ebendorffheidepriem H, et al. Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends[J]. Sensors, 2017, 17(1): 12.

【90】Caucheteur C, Voisin V, Albert J. Polarized spectral combs probe optical fiber surface plasmons[J]. Optics Express, 2013, 21(3): 3055-3066.

【91】Baiad M D, Gagné M, Madore W J, et al. Surface plasmon resonance sensor interrogation with a double-clad fiber coupler and cladding modes excited by a tilted fiber Bragg grating[J]. Optics Letters, 2013, 38(22): 4911-4914.

【92】Qiu X, Chen X, Liu F, et al. Plasmonic fiber-optic refractometers based on a high Q-Factor amplitude interrogation[J]. IEEE Sensors Journal, 2016, 16(15): 5974-5978.

【93】Burgmeier J, Feizpour A, Schade W, Reinhard, et al. Plasmonic nanoshell functionalized etched fiber Bragg gratings for highly sensitive refractive index measurements[J]. Optics Letters, 2015, 40(4): 546-549.

【94】Zheng J, Dong X, Ji J, et al. Power-referenced refractometer with tilted fiber Bragg grating cascaded by chirped grating[J]. Optics Communications, 2014, 312(4): 106-109.

【95】Coelho L C C, de Almeida J M M M, Moayyed H, et al. Multiplexing of surface plasmon resonance sensing devices on etched single-mode fiber[J]. Journal of Lightwave Technology, 2015, 33(2): 432-438.

【96】Gonza'lez-Vila , Kinet D, Mégret M, et al. Narrowband interrogation of plasmonic optical fiber biosensors based on spectral combs[J]. Optics & Laser Technology, 2017, 96: 141-146.

【97】Bremer K, Roth B. Fibre optic surface plasmon resonance sensor system designed for smartphones[J]. Optics Express, 2015, 23(13): 17179-17184.

【98】Caucheteur C, Guo T, Albert J. Polarization-assisted fiber Bragg grating sensors: tutorial and review[J]. Journal of Lightwave Technology, 2017, 35(16): 3311-3322.

【99】Moayyed H, Leite I T, Coelho L, et al. Analysis of a plasmonic based optical fiber optrode with phase interrogation[J]. Photonic Sensors, 2016, 6(3): 221-233.

【100】Caucheteur C, Shevchenko Y, Shao L Y, et al. High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement[J]. Optics Express, 2011, 19(2): 1656-1664.

【101】Bialiayeu A, Caucheteur C, Ahamad N, et al. Self-optimized metal coatings for fiber plasmonic by electroless deposition[J]. Optics Express, 2011, 19(20): 18742-18753.

【102】Renoirt J M, Debliquy M, Albert J, et al. Surface plasmon resonances in oriented silver nanowire coatings on optical fibers[J]. Journal of Physical Chemistry C, 2014, 118(20): 11035-11042.

【103】Bette S, Caucheteur C, Wuilpart M, et al. Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber[J]. Optics Communications, 2007, 269(2): 331-337.

【104】Xiong Y L, Ren N K, Wu M Z, et al. Sensitivity-enhanced FBG demodulation system with multi-sideband filtering method[J]. Optics Communications, 2017, 382: 246-252.

【105】Dai J, Yang M, Yu X, et al. Optical hydrogen sensor based on etched fiber Bragg grating sputtered with Pd/Ag composite film[J]. Optical Fiber Technology, 2013, 19(1): 26-30.

【106】Sridevi S, Vasu K S, Jayaraman N, et al. Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer[J]. Sensors & Actuators B Chemical, 2014, 195(5): 150-155.

【107】Zhang Y, Wang F, Duan Z, et al. A novel low-power-consumption all-fiber-optic anemometer with simple system design[J]. Sensors, 2017, 17(9): 2107.

【108】Chiu Y D, Wu C W, Chiang C C. Tilted fiber Bragg grating sensor with grapheme oxide coating for humidity sensing[J]. Sensors, 2017, 17(9): 2129.

【109】Luo B, Xu Y, Wu S, et al. A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus[J]. Biosensors & Bioelectronics, 2017, 100: 169-175.

【110】Chiavaioli F, Baldini F, Trono C. Manufacturing and spectral features of different types of long period fiber gratings: phase-shifted, turn-around point, internally tilted, and pseudo-random[J]. Fibers, 2017, 5(3): 29-41.

【111】Offermans P, Shaafsma M C, Rodriguez S R K, et al. Universal scaling of the figure of merit of plasmonic sensors[J]. ACS Nano, 2011, 5(6): 5151-5157.

【112】Pilla P, Trono C, Baldini F, et al. Giant sensitivity of long period gratings in transition mode near the dispersion tuning point: an integrated design approach[J]. Optics Letters, 2012, 37(19): 4152-4154.

【113】Vaiano P, Carotenuto B, Pisco M, et al. Lab on fiber technology for biological sensing applications[J]. Laser Photonics Rev, 2016, 10(6): 922-961.

【114】DeLisa M P, Zhang Z, Shiloach M, et al. Evanescent wave long-period fiber Bragg grating as an immobilized antibody sensor[J]. Analytical Chemistry, 2000, 72(13): 2895-2900.

【115】Chryssis A N, Saini S S, Lee S M, et al. Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(4): 864-872.

【116】Fan X, White I M, Shopova S I, et al. Sensitive optical biosensors for unlabeled targets: a review[J]. Analytica Chimica Acta, 2008, 620(1/2): 8-26.

【117】Marques L, Hernandez F U, James S W, et al. Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles[J]. Biosensors & Bioelectronics, 2016, 75: 222-231.

【118】Tang J L, Cheng S F, Hsu W T, et al. Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating[J]. Sensors and Actuators B Chemical, 2006, 119(1): 105-109.

【119】Shevchenko Y, Francis T J, Blair D A D, et al. In situ biosensing with a surface plasmon resonance fiber grating aptasensor[J]. Analytical Chemistry, 2011, 83(18): 7027-7034.

【120】Albert J, Lepinay S, Caucheteur C, et al. High resolution grating-assisted surface plasmon resonance fiber optic aptasensor[J]. Methods, 2013, 63(3): 239-254.

【121】Voisin V, Pilate J, Damman P, et al. Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors[J]. Biosensors & Bioelectronics, 2014, 51(2): 249-254.

【122】Shevchenko Y, Camciunal G, Cuttica D F, et al. Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior[J]. Biosensors & Bioelectronics, 2014, 56(1): 359-367.

【123】Zhang Y, Liu Z, Gu Y, et al. Detection of glycoprotein using fiber optic surface plasmon resonance sensors with boronic acid[C]. Optical Fiber Sensors Conference (OFS), IEEE, 2017: 1-4.

【124】Ribaut C, Voisin V, Malachovska' V, et al. Small biomolecule immunosensing with plasmonic optical fiber grating sensor[J]. Biosensors & Bioelectronics, 2016, 77: 315-322.

【125】Ribaut C, Loyez M, Larrieu J C, et al. Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis[J]. Biosensors & Bioelectronics, 2016, 92: 449-456.

【126】Malachovska' V, Ribaut C, Voisin V, et al. Fiber-optic SPR immunosensors tailored to target epithelial cells through membrane receptors[J]. Analytical Chemistry, 2015, 87(12): 5957-5965.

【127】Guo T, Liu F, Liang X, et al. Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings[J]. Biosensors & Bioelectronics, 2016, 78(68): 221-228.

【128】Han L, Guo T, Xie C, et al. Specific detection of aquaporin-2 using plasmonic tilted fiber grating sensors[J]. Journal of Lightwave Technology, 2017, 35(16): 3360-3365.

【129】Candiani A, Bertucci A, Giannetti S, et al. Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating[J]. Journal of Biomedical Optics, 2013, 18(5): 057004.

【130】Guo T, Liu F, Liu Y, et al. In-situ detection of density alteration in non-physiological cells with polarimetric tilted fiber grating sensors[J]. Biosensors & Bioelectronics, 2014, 55(9): 452-458.

【131】Zhang X J, Wu Z, Liu F, et al. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings[J]. Biomedical Optics Express, 2018, 9(4):1735-1744.

【132】Yong Y, Guo T, Qiu X, et al. Electrochemical surface plasmon resonance fiber-optic sensor: in-situ detection of electroactive biofilms[J]. Analytical Chemistry, 2016, 88(15): 7609-7616.

【133】Hu W J, Huang Y Y, Chen C Y, et al. Highly sensitive detection of dopamine using a graphene functionalized plasmonic fiber-optic sensor with aptamer conformational amplification[J/OL]. Sensors and Actuators B:Chemical,2018[2018-03-02].https:∥www.sciencedirect.com/science/article/pii/S0925400518304830.

【134】Wei W, Nong J, Zhang G, et al. Graphene-based long-period fiber grating surface plasmon resonance sensor for high-sensitivity gas sensing[J]. Sensors, 2017, 17(1): 2-12.

【135】Quero G, Consales M, Severino R, et al. Long period fiber grating nano-optrode for cancer biomarker detection[J]. Biosensors & Bioelectronics, 2016, 80: 590-600.

【136】Schuster T, Herschel R, Neumann N, et al. Miniaturized long-period fiber grating assisted surface plasmon resonance sensor[J]. Journal of Lightwave Technology, 2012, 30(8): 1003-1008.

【137】Alwis L, Bremer K, Sun T, et al. Analysis of the characteristics of PVA-coated LPG-based sensors to coating thickness and changes in the external refractive index[J]. IEEE Sensors Journal, 2013, 13(3): 1117-1124.

【138】Berghmans F, Geernaert T, Baghdasaryan T, et al. Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres[J]. Laser & Photonics Reviews, 2013, 8(1): 27-52.

【139】Zhong N, Zhao M, Zhong L, et al. A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2[J]. Biosensors & Bioelectronics, 2016, 85: 876-882.

【140】Xin X, Zhong N, Liao Q, et al. High-sensitivity four-layer polymer fiber-optic evanescent wave sensor[J]. Biosensors & Bioelectronics, 2017, 91: 623-628.

【141】Caucheteur C, Mégret P, Hu X. Surface plasmon excitation at near-infrared wavelengths in polymer optical fibers[J]. Optics Letters, 2015, 40(17): 3998-4001.

【142】Lacraz A, Polis M, Theodosiou A, et al. Femtosecond laser inscribed Bragg gratings in low loss CYTOPpolymer optical fiber[J]. IEEE Photonics Technology Letters, 2015, 27(7): 693-696.

【143】Vollmer F, Swaim J D, Foreman M R. Whispering gallery mode sensors[J]. Advances in Optics and Photonics, 2015, 7(2): 168-240.

【144】Tow K H, Chow D M, Vollrath F, et al. Exploring the use of native spider silk as an optical fibre for chemical sensing[J]. Journal of Lightwave Technology, 2017, PP(99): 1-1.

【145】Trevisanutto J O, Linhananta A, Das G. Plasmonic structure: fiber grating formed by gold nanorods on a tapered fiber[J]. Optics Letters, 2016, 41(24): 5789-5792.

【146】Ianoul A, Robson M, Pripotnev V, et al. Polarization-selective excitation of plasmonic resonances in silver nanocube random arrays by optical fiber cladding mode evanescent fields[J]. RSC Advances, 2014, 4(38): 19725-19730.

【147】Villanueva G E, Jakubinek M B, Simard B, et al. Linear and nonlinear optical properties of carbon nanotube-coated single-mode optical fiber gratings[J]. Optics Letters, 2011, 36(11): 2104-2106.

【148】Jiang B, Lu X, Gan X, et al. Graphene-coated tilted fiber-Bragg grating for enhanced sensing in low-refractive-index region[J]. Optics Letters, 2015, 40(17): 3994-3997.

【149】Zhang Y, Wang F, Liu Z, et al. Fiber-optic anemometer based on single-walled carbon nanotube coated tilted fiber Bragg grating[J]. Optics Express, 2017, 25(20): 24521-24530.

【150】Wu Y, Yao B, Zhang A, et al. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing[J]. Optics Letters, 2014, 39(5): 1235-1237.

【151】Sridevi S, Vasu K S, Jayaraman N, et al. Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer[J]. Sensors & Actuators B Chemical, 2014, 195(5): 150-155.

【152】Arasu P T, Noor A S M, Shabaneh A A, et al. Fiber Bragg grating assisted surface plasmon resonance sensor with graphene oxide sensing layer[J]. Optics Communications, 2016, 380: 260-266.

【153】Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749-758.

【154】Gan X, Wang Y, Zhang F, et al. Graphene-controlled fiber Bragg grating and enabled optical bistability[J]. Optics Letters, 2016, 41(3): 603-606.

【155】White I, Fan X. On the performance quantification of resonant refractive index sensors[J]. Optics Express, 2008, 16(2): 1020-1028.

【156】Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection[J]. Analytical & Bioanalytical Chemistry, 2015, 407(14): 3883-3897.

【157】Shamah S M, Cunningham B T. Label-free cell-based assays using photonic crystal optical biosensors[J]. Analyst, 2011, 136(6): 1090-1102.

【158】Densmore A, Xu D X, Janz S, et al. Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response[J]. Optics Letters, 2008, 33(6): 596-598.

【159】Kuswandi B, Nuriman, Huskens J, et al. Optical sensing systems for microfluidic devices: a review[J]. Analytica Chimica Acta, 2007, 601(2): 141-155.

引用该论文

Guo Tuan. Review on Plasmonic Optical Fiber Grating Biosensors[J]. Acta Optica Sinica, 2018, 38(3): 0328006

郭团. 等离子体共振光纤光栅生物传感器综述[J]. 光学学报, 2018, 38(3): 0328006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF