作者单位
摘要
2Institute of Photonics Technology, Jinan University, Guangzhou, Guangdong 511443, China

基于平板波导近似模型构建了光纤基底圆环薄膜波导的模式方程,得到离散分布的薄膜波导模式,进一步结合全矢量模式理论,获得了光纤模式转换的新理解。按照从高阶至低阶(而不是广泛认知的从低阶至高阶)的模式顺序,具有一定厚度的圆环薄膜波导引起光纤包层模转变为相位匹配的薄膜包层模,继续增大圆环薄膜波导厚度,会破坏相位匹配条件而使该薄膜包层模再次转变为相邻的低阶光纤包层模,并依此形成周期的模式转换过程。最后,通过氧化铟锡镀膜倾斜布拉格光纤光栅的光谱变化验证上述机理,分析发现了正交偏振薄膜波导模(P和S偏振态)的同周期但非同步的激发过程及其对光纤偏振的周期调控规律,理论分析与前期实验结果一致。研究结果为光纤矢量参数传感(振动、扭转、压力、声场等)、光纤生物传感(体折射率与面折射率区分测量)及光通信偏振滤波等研究提供新思路。

光纤光学 薄膜波导 模式转换 偏振调控 倾斜布拉格光纤光栅 光纤传感 
光学学报
2021, 41(13): 1306018
郭团 *
作者单位
摘要
暨南大学光子技术研究院, 广东 广州 510632
等离子体共振传感技术是当今实用化最强、最有可能实现单分子检测的生物医学检测技术之一。高灵敏度的等离子体共振传感技术与细如发丝的光纤载体相结合,为现代生物传感研究提供了一种可实现在体原位检测的全新方法。系统介绍了基于光纤光栅的等离子体共振生物医学传感机理与关键技术,通过能量汇聚的表面共振场实现了10-6~10-8 RIU的超高精度折射率测量,为生物医学提供了超低检出限(pM~fM量级)、特异性及原位实时检测新方法。此外,此类传感器还可提供绝对式/相对式多参量同时检测手段,能有效消除环境干扰影响,确保传感器的稳定性和可靠性。最后,回顾了近些年等离子体共振光纤光栅生物医学传感领域取得的研究进展(包括蛋白、血糖、微生物、气体等样本原位检测),并进行总结和展望。
传感器 光纤光栅 表面等离子激元 生物医学传感 
光学学报
2018, 38(3): 0328006
作者单位
摘要
南开大学现代光学研究所, 天津 300071
提出了光纤光栅啁啾化传感概念和传感机理,将光纤光栅微观分解为栅区长度范围的许多具有独立感知能力且彼此关联的有效作用子栅集,表述了有效作用子栅集与待测环境场空间梯度分布之间的对应关系,从而较好地解释了光纤光栅啁啾谱产生的内在机理。理论推导并实验验证了光栅啁啾谱各谱参量(波长、带宽和反射光强)与待测环境场(温度和应变)之间的对应关系,为利用单一光纤光栅实现多参量同时区分测量、任意非均匀空间分布场传感提供了科学有效的解决方法。
导波与光纤光学 光纤传感 光纤光栅 啁啾化传感 
光学学报
2008, 28(5): 828
作者单位
摘要
南开大学现代光学研究所,天津,300071
采用线阵InGaAs光电二极管阵列和体相位光栅并结合空分复用和波分复用技术,对光纤光栅传感进行解调.设计了基于线阵InGaAs光电二极管阵列和体相位光栅的光纤光栅传感解调系统,通过系统测试和性能分析,该解调系统解调带宽42 nm,信噪比30 dB,波长偏移测量精确度±15 pm,功率测量精确度为±0.3 dB.基于线阵InGaAs光电二极管阵列和体相位光栅的光纤光栅解调系统不但尺寸小,功耗低,而且具有较高的解调速度.
光纤光栅传感 InGaAs光电二极管阵列 解调系统 
光子学报
2007, 36(9): 1591
作者单位
摘要
南开大学,现代光学研究所,天津,300071
从理论上研究了级联双折射光纤环镜滤波器的滤波特性,给出加隔离器与不加隔离器两种不同结构的串联双环镜滤波器透射光强的表达式,并对于两个环镜取不同的周期比时的滤波特性进行了数值模拟和分析.得出串联环镜滤波效果与级联顺序无关,光隔离器对滤波效果不会产生影响,只是增加了插入损耗.通过级联和改变两个环镜的双折射光纤长度比,可以获得不同的滤波效果.最后给出了多个环镜直接级联后透射光强的通项表达式,通过对通项式的理论分析可以设计不同的滤波器.
导波与光纤光学 滤波器 光纤环形镜 高双折射光纤 
光子学报
2007, 36(7): 1289
作者单位
摘要
南开大学现代光学研究所, 天津 300071
报道了基于光纤光栅反射谱带宽调制和光强差分检测技术实现单一光纤光栅温变不敏感动态压力传感的新方法。设计了一种结构新颖的双孔梁压力传感装置, 依据双孔梁有限元受力分析将光纤光栅准确定位于线性梯度应变区, 压力作用下光纤光栅反射谱对称展宽, 反射光强线性正比于压力变化。基于光波导理论和材料力学原理推导了线性梯度应变场作用下光栅反射谱带宽、反射光强与压力之间的响应关系。利用光强差分检测技术取代传统波长解调方法, 简化解调过程的同时传感系统免受温变影响。实验表明, 在-10~80 ℃的温度变化范围内, 系统测量误差小于总量程(120 kPa)的1.8%, 动态响应速度约80 Hz, 重复测量系统输出稳定, 具有较好的应用价值。
导波与光纤光学 光纤传感 光纤光栅 动态压力传感 带宽调制 光强检测 
光学学报
2007, 27(2): 207
作者单位
摘要
南开大学现代光学研究所, 天津 300071
报道了利用反射谱带宽调制和光强差分探测技术实现单一光纤光栅温变无补偿位移精确测量的新方法。设计了一种结构新颖的曲臂梁位移传感装置, 结合光波导理论与材料力学原理分析了光纤光栅在高斯应变作用下光栅反射谱侧向梯度展宽的成因, 理论推导了特殊结构梁在外力作用下光栅反射谱带宽/反射光强与压力之间的响应关系。光栅反射谱侧向梯度展宽的同时反射光强线性增加, 利用光强差分检测方法消除光源出光抖动的影响, 提高了位移测量精度。基于带宽调制的光纤光栅位移传感方法免受温度变化的影响, 在-10 ℃~80 ℃的温度变化范围内, 测量误差小于1.2%, 实现了单光纤光栅温变无补偿位移测量。
光纤光学 光纤光栅 位移传感 光纤传感 带宽调制 
光学学报
2007, 27(1): 15
作者单位
摘要
南开大学现代光学研究所, 天津 300071
提出了一种新型的光纤光栅的中心波长与带宽独立调谐的方法。将光纤布拉格光栅(FBG)粘贴于圆环形薄壁截面梁的外表面,通过旋转圆环形薄壁截面梁,即相当于改变光纤光栅的位置来实现中心波长与带宽的独立调谐。实验上得到了6.706 nm准无啁啾的中心波长调谐和5.368 nm的准无中心波长漂移的最大带宽调谐,并且此中心波长和带宽调谐均与拉力呈线性关系,实验结果与理论分析一致。
光电子学 中心波长调谐 带宽调谐 光纤布拉格光栅 圆环形薄壁截面梁 
中国激光
2006, 33(5): 596
作者单位
摘要
西安石油大学,光纤传感实验室,西安,710065
报道了一种检测光纤光栅传感器波长的新方案.实验系统采用新型的级联结构对电热调谐的光纤光栅滤波器进行复用,扫描分析传感信号光的峰值波长,同时用参考波长校准方法消除了电热调谐中的蠕动误差.结果表明,系统的检测范围可达23nm,波长分辨率为3.1pm,应变测量分辨率为2.56με.
光纤光栅 传感器 波分复用 波长检测 
激光技术
2005, 29(2): 150
作者单位
摘要
西安石油大学光纤传感实验室, 陕西 西安 710065
分析了聚合物封装光纤布拉格光栅(FBG)传感器温度与压力响应特性。通过实验对某种特殊聚合物封装光纤光栅的温度与压力响应进行研究,发现当温度变化范围较大时,由于温度对材料弹性模量的影响,光纤光栅的压力响应灵敏度不再为常数,而是随温度变化的。当温度在30℃时,其压力响应灵敏度为0.036 nm/MPa,在180℃时则变为0.175 nm/MPa,且灵敏度系数随温度的变化呈分段线性变化。因此在使用聚合物封装实现光纤光栅传感器增敏以及大范围温度和压力的同时测量时,需要将弹性模量作为温度的函数,代入光纤光栅温度与压力响应灵敏度系数矩阵公式中以消除大范围温度变化对聚合物力学特性的影响。
光纤光学 光纤布拉格光栅 聚合物封装 温度响应 压力响应 
中国激光
2005, 32(2): 224

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!