首页 > 论文 > 光学学报 > 38卷 > 5期(pp:0530003--1)

参数主动控制的痕量气体实时在线测量系统

Real-Time and On-Line Measurement System for Trace Gas with Active Control Parameters

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于二极管激光波长调制光谱技术建立了一套参数主动控制的痕量气体实时在线探测系统。为提高系统的实时在线测量性能和测量精度,在模拟温度与压强对痕量气体浓度探测影响的基础上,待测气体的温度、压强和流量被主动控制,并能保持长期稳定性。小波去噪和卡尔曼滤波数字降噪技术被联合应用于系统。以CO2分子吸收为例的实验结果表明,小波去噪的应用将吸收光谱的信噪比提高了30%左右,卡尔曼滤波的应用将CO2体积分数的测量精度由2.5×10-7提高至7×10-8。Allan方差结果给出了系统的稳定时间,约为60 s。实测实验室内CO2浓度的结果表明,该测量系统具有良好的稳定性和可靠性,能够很好地监测痕量气体浓度的变化。

Abstract

Based on diode laser wavelength modulation spectroscopy technique, a set of real-time and on-line measurement system for trace gases is established with active control parameters. In order to improve the performance of real-time and on-line measurement and the detection precision of the system, after a theoretical simulation of the effects of temperature and pressure on the measurement concentration, we actively control the temperature, pressure and mass flow of gas, and they can keep long-term stability. Moreover, the digitized techniques of wavelet denoising and Kalman filtering are jointly applied to the system. CO2 molecular absorption experimental results show that the signal-to-noise ratio of the absorption spectrum is improved by about 30% with the application of wavelet denoising, and the application of Kalman filter improves the measurement precision of concentration from 2.5×10-7 to 7×10-8. The stable time of the system given by Allan variance is about 60 s. The results obtained by measuring the concentration of CO2 in laboratory indicate that the system has good stability and reliability, and it can monitor the concentration change of trace gas very well.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O433.5+1;X831

DOI:10.3788/AOS201838.0530003

所属栏目:光谱学

基金项目:国家重点研发计划(2016YFC0303900,2017YFC0209700)、国家自然科学基金(41405022)、中国科学院青年创新促进会基金(2015264)、安徽省高校自然科学基金(TSKJ2016B12)

收稿日期:2017-11-22

修改稿日期:2017-12-17

网络出版日期:--

作者单位    点击查看

孙明国:安徽工程大学数理学院, 安徽 芜湖 241000中国科学院大气成分与光学重点实验室, 安徽 合肥 230031
马宏亮:安庆师范大学物理与电气工程学院, 安徽 安庆 246011
刘强:中国科学院大气成分与光学重点实验室, 安徽 合肥 230031
曹振松:中国科学院大气成分与光学重点实验室, 安徽 合肥 230031
王贵师:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
刘锟:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
黄印博:中国科学院大气成分与光学重点实验室, 安徽 合肥 230031
高晓明:中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
饶瑞中:中国科学院大气成分与光学重点实验室, 安徽 合肥 230031

联系人作者:曹振松(zscao@aiofm.ac.cn)

备注:孙明国(1981-),男,博士,讲师,主要从事非线性光学、高分辨率激光光谱技术及应用、同位素测量技术方面的研究。E-mail: sunmguo@outlook.com。

【1】Tittel F K, Kosterev A A. Special issue: “optics: trends in laser sources, spectroscopic techniques and their applications to trace-gas detection”[J]. Applied Physics B, 2006, 85(2/3): 171.

【2】Buszewski B, Grzywiński D, Ligor T, et al. Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques[J]. Bioanalysis, 2013, 5(18): 2287-2306.

【3】Wagner E, Dandliker R, Spenner K. A comprehensive survey: optical sensors[M]. Berlin: [s.n.], 1995.

【4】Fine G F, Cavanagh L M, Afonja A, et al. Metal oxide semi-conductor gas sensor in environmental monitoring[J]. Sensors, 2010, 10(6): 5469-5502.

【5】Wilson J S. Sensor technology handbook[M]. New York: Elsevier, 2005.

【6】Kosterev A A, Wysocki G, Bakhirkin Y, et al. Application of quantum cascade lasers to trace gas analysis[J]. Applied Physics B, 2008, 90(2): 165-176.

【7】Xia J B, Zhu F, Zhang S S, et al. A ppb level sensitive sensor for atmospheric methane detection[J]. Infrared Physics and Technology, 2017, 86: 194-201.

【8】Wu T, Xu D, He X D, et al. Off-axis integrated cavity output spectroscopy technique based on wavelength modulation[J]. Acta Optica Sinica, 2017, 37(8): 0830002.
吴涛, 徐冬, 何兴道, 等. 基于波长调制的离轴积分腔输出光谱技术[J]. 光学学报, 2017, 37(8): 0830002.

【9】Jia L Q, Liu W Q, Liu J G, et al. Effects of temperature and pressure changes on the second harmonic results[J]. Chinese Journal of Lasers, 2014, 41(12): 1215004.
贾良权, 刘文清, 刘建国, 等. 温度和压强变化对二次谐波反演结果的影响[J]. 中国激光, 2014, 41(12): 1215004.

【10】Wei W, Chang J, Cao L H, et al. Artificial absorption creation for more accurate tunable diode laser absorption spectroscopy measurement[J]. Optics Communications, 2017, 399: 112-119.

【11】Reid J, Labrie D. Second-harmonic detection with tunable diode lasers: comparison of experiment and theory[J]. Applied Physics B, 1981, 26(3): 203-210.

【12】Tan T, Liu K, Wang G S, et al. Research on high sensitivity measurement of N2O and CO based on MIR-QCL and novel compact multi-pass gas cell[J]. Acta Optica Sinica, 2015, 35(2): 0230005.
谈图, 刘锟, 王贵师, 等. 基于中红外QCL激光和新型多通池高灵敏度测量N2O和CO的研究[J]. 光学学报, 2015, 35(2): 0230005.

【13】Li Z X. Investigation of trace gas detection based on continuous wave cavity ring-down spectroscopy[D]. Taiyuan: Shanxi University, 2015: 25-27.
李志新. 基于连续波腔衰荡光谱的痕量气体检测技术研究[D]. 太原: 山西大学, 2015: 25-27.

【14】Li J S, Yu B L, Fischer H. Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing[J]. Applied Spectroscopy, 2015, 69(4): 496-506.

【15】Wu T, Chen W D, Kerstel E, et al. Kalman filtering real-time measurements of H2O isotopologue ratios by laser absorption spectroscopy at 2.73 μm[J]. Optics Letters, 2010, 35(5): 634-636.

引用该论文

Sun Mingguo,Ma Hongliang,Liu Qiang,Cao Zhensong,Wang Guishi,Liu Kun,Huang Yinbo,Gao Xiaoming,Rao Ruizhong. Real-Time and On-Line Measurement System for Trace Gas with Active Control Parameters[J]. Acta Optica Sinica, 2018, 38(5): 0530003

孙明国,马宏亮,刘强,曹振松,王贵师,刘锟,黄印博,高晓明,饶瑞中. 参数主动控制的痕量气体实时在线测量系统[J]. 光学学报, 2018, 38(5): 0530003

被引情况

【1】段小丽,王明泉. 改进型PSO-SVM算法对井下多组分气体定量分析的研究. 光谱学与光谱分析, 2019, 39(9): 2883-2888

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF