首页 > 论文 > Photonics Research > 6卷 > 9期(pp:900-907)

Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

We experimentally demonstrate a long-term stable two-dimensional saturable absorption material under ambient conditions—multi-layer antimonene feasible for the mid-infrared spectral region—for the first time to our knowledge. The multi-layer antimonene material prepared using a liquid-phase exfoliation method was coated on a quartz/CaF2 for characterizations and an Au mirror as a reflection-type saturable absorber (SA) device. It has a modulation depth of 10.5%, a saturation peak intensity of 0.26 GW/cm2, and a non-saturation loss of 19.1% measured at 2868.0 nm using the typical power-dependent method. By introducing the SA device into a linear-cavity Ho3+/Pr3+-codoped fluoride fiber laser at 2865.0 nm, stable Q-switched pulses were obtained. It generated a maximum output power of 112.3 mW and pulse energy of 0.72 μJ, while the shortest pulse duration and largest repetition rate were 1.74 μs and 156.2 kHz, respectively. The long-term stability of the SA device was also checked using the same laser setup within 28 days. The results indicate that multi-layer antimonene is a type of promising long-term stable SA material under ambient conditions that can be applied in the mid-infrared spectral region.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000900

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61722503, 61435003, 61421002); Open Fund of Science and Technology on Solid-State Laser Laboratory; Fundamental Research Funds for the Central Universities (ZYGX2016J068); International Scientific Cooperation Project of Sichuan Province (2017HH0046); National Key R&D Program of China (YS2018YFB110012); Natural Science Foundation of Zhejiang Province10.13039/501100004731 (LQ18A040004).

收稿日期:2018-06-05

录用日期:2018-07-19

网络出版日期:2018-07-20

作者单位    点击查看

Hongyu Luo:State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
Xiangling Tian:State Key Laboratory of Luminescent Materials and Devices and School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
Ying Gao:State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
Rongfei Wei:Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Jianfeng Li:State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, Chinae-mail: lijianfeng@uestc.edu.cn
Jianrong Qiu:State Key Laboratory of Luminescent Materials and Devices and School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, ChinaState Key Laboratory of Modern Optical Instrumentation, College of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Chinae-mail: qjr@zju.edu.cn
Yong Liu:State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China

联系人作者:联系作者

【1】T. H. Allik, S. Chandra, D. M. Rines, P. G. Schunemann, J. A. Hutchinson, and R. Utano, “Tunable 7-12-μm optical parametric oscillator using a Cr, Er:YSGG laser to pump CdSe and ZnGeP2 crystals,” Opt. Lett. 22 , 597–599 (1997).

【2】M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77??μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39 , 2052–2055 (2014).

【3】J. Gauthier, V. Fortin, J. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4??μm in a low-loss fluoroindate fiber,” Opt. Lett. 41 , 1756–1759 (2016).

【4】S. Duval, J. Gauthier, L. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6??μm,” Opt. Lett. 41 , 5294–5297 (2016).

【5】R. Kaufmann, and R. Hisbst, “Pulsed 2.94??μm erbium–YAG laser skin ablation—experimental results and first clinical application,” Clin. Exp. Dermatol. 15 , 389–393 (1990).

【6】J. T. Walsh, and T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Lasers Surg. Med. 9 , 208–211 (1989).

【7】R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20 , 112–118 (1994).

【8】R. Ostrowski, J. Marcak, A. Rycyk, M. Strelec, I. Smelter, and A. Koss, “Er:YAG laser system for cleaning of painted surfaces,” in Conference on Lasers and Electro-Optics Europe , Munich, Germany (2006), p.?676.

【9】J. F. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87??μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37 , 3747–3749 (2012).

【10】S. Antipov, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica 3 , 1373–1376 (2016).

【11】S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12??W Q-switched Er:ZBLAN fiber laser at 2.8??μm,” Opt. Lett. 36 , 2812–2814 (2011).

【12】A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12 , 5125–5130 (2014).

【13】M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, and A. Heinrich, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7 , 498–504 (2010).

【14】J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97??μm fluoride fiber laser,” Laser Phys. Lett. 11 , 065102 (2014).

【15】H. Y. Luo, J. F. Li, J. T. Xie, B. Zhai, C. Wei, and Y. Liu, “High average power and energy microsecond pulse generation from an erbium-doped fluoride fiber MOPA system,” Opt. Express 24 , 29022–29032 (2016).

【16】T. Zhang, G. Y. Feng, H. Zhang, S. G. Ning, B. Lan, and S. H. Zhou, “Compact watt-level passively Q-switched ZrF4-BaF2-LaF3-AIF3-NaF fiber laser at 2.8??μm using Fe2+:ZnSe saturable absorber mirror,” Opt. Eng. 55 , 086106 (2016).

【17】C. Wei, H. Zhang, H. Shi, K. Konynenbelt, H. Luo, and Y. Liu, “Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength,” IEEE Photon. Technol. Lett. 29 , 881–884 (2017).

【18】S. G. Ning, G. Y. Feng, H. Zhang, W. Zhang, S. Y. Dai, Y. Xiao, W. Li, X. X. Chen, and S. H. Zhou, “Fabrication of Fe2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser,” Opt. Mater. Express 8 , 865–874 (2018).

【19】C. Wei, X. S. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78??μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38 , 3233–3235 (2013).

【20】J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40 , 3659–3662 (2015).

【21】C. Wei, H. Y. Luo, H. Zhang, C. Li, J. T. Xie, J. F. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3??μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13 , 105108 (2016).

【22】P. H. Tang, Y. Tao, Y. L. Mao, M. Wu, Z. Y. Huang, S. N. Liang, X. H. Chen, X. Qi, B. Huang, J. Liu, and C. J. Zhao, “Graphene/MoS2 heterostructure: a robust mid-infrared optical modulator for Er3+-doped ZBLAN fiber laser, ” Chin. Opt. Lett. 16 , 020012 (2018).

【23】Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, and L. J. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8??μm,” Opt. Express 23 , 24713–24718 (2015).

【24】J. F. Li, H. Y. Luo, B. Zhai, R. G. Lu, Z. N. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6 , 30361 (2016).

【25】K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306 , 666–669 (2004).

【26】Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19 , 3077–3083 (2009).

【27】V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89 , 235319 (2014).

【28】Y. F. Song, Z. M. Liang, X. T. Jiang, Y. X. Chen, Z. J. Li, L. Lu, Y. Q. Ge, K. Wang, J. L. Zheng, S. B. Lu, J. H. Ji, and H. Zhang, “Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability,” 2D Mater. 4 , 045010 (2017).

【29】G. Wang, R. Pandey, and S. P. Kama, “Atomically thin group V elemental films: theoretical investigations of antimonene allotropes,” ACS Appl. Mater. Interfaces 7 , 11490–11496 (2015).

【30】S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, “Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities,” Angew. Chem. 128 , 1698–1701 (2016).

【31】S. K. Gupta, Y. Sonvane, G. X. Wang, and P. Ravindra, “Size and edge roughness effects on thermal conductivity of pristine antimonene allotropes,” Chem. Phys. Lett. 641 , 169–172 (2015).

【32】S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, “Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions,” Angew. Chem. 127 , 3155–3158 (2015).

【33】M. Zhao, X. Zhang, and L. Li, “Strain-driven band inversion and topological aspects in antimonene,” Sci. Rep. 5 , 16108 (2015).

【34】Y. F. Xu, B. Peng, H. Zhang, H. Z. Shao, R. J. Zhang, and H. Y. Zhu, “First-principle calculations of phononic, electronic and optical properties of monolayer arsenene and antimonene allotropes,” Ann. Phys. 529 , 1600152 (2017).

【35】M. X. Wang, F. Zhang, Z. P. Wang, Z. X. Wu, and X. G. Xu, “Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber,” Opt. Express 26 , 4085–4095 (2018).

【36】J. P. Ji, X. F. Song, J. Z. Liu, Z. Yan, C. X. Huo, S. L. Zhang, M. Su, L. Liao, W. H. Wang, Z. H. Ni, Y. F. Hao, and H. B. Zeng, “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nat. Commun. 7 , 13352 (2016).

【37】J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature 493 , 504–508 (2013).

【38】D. H. Li, J. Zhang, and Q. H. Xiong, “Laser cooling of CdS nanobelts: thickness matters,” Opt. Express 21 , 19302–19310 (2013).

【39】L. Lu, X. Tang, R. Cao, L. M. Wu, Z. J. Li, G. H. Jing, B. Q. Dong, S. B. Lu, Y. Li, Y. J. Xiang, J. Q. Li, D. Y. Fan, and H. Zhang, “Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability,” Adv. Opt. Mater. 5 , 1700301 (2017).

【40】C. H. Zhu, F. Q. Wang, Y. F. Meng, X. Yuan, F. X. Xiu, H. Y. Luo, Y. Z. Wang, J. F. Li, X. J. Lv, L. He, Y. B. Xu, J. F. Liu, C. Zhang, Y. Shi, R. Zhang, and S. N. Zhu, “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nat. Commun. 8 , 14111 (2017).

【41】B. Braun, F. X. K?rtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22 , 381–383 (1997).

【42】C. H?nninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16 , 46–56 (1999).

引用该论文

Hongyu Luo, Xiangling Tian, Ying Gao, Rongfei Wei, Jianfeng Li, Jianrong Qiu, and Yong Liu, "Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region," Photonics Research 6(9), 900-907 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF