作者单位
摘要
吉林大学 电子科学与工程学院 集成光电子学国家重点实验室,吉林 长春 130012
高功率中红外光纤激光光源在前沿科学研究、空间光通信、医学诊断与治疗、环境污染监测和光电对抗等领域有着重要应用。拉曼光纤激光光源输出波长灵活,原则上可以在光纤材料透过窗口范围内获得任意波长激光,是实现中红外激光输出的一种重要手段。目前,基于硫系玻璃光纤、氟化物玻璃光纤、碲酸盐玻璃光纤等中红外玻璃光纤材料,已实现工作波长位于3.77 μm的拉曼光纤激光器、平均输出功率为3.7 W的2231 nm拉曼光纤激光器和波长调谐范围覆盖2~4.3 μm的拉曼孤子激光光源。近期,笔者研究组制备出一种具有高热学和化学稳定性、高激光损伤阈值、大拉曼频移和高拉曼增益系数的氟碲酸盐玻璃光纤,并利用其作为非线性介质,先后实现了级联拉曼散射、级联拉曼光纤放大器、波长调谐范围覆盖1.96~2.82 μm的拉曼孤子激光以及波长为~4 μm的红移色散波,验证了氟碲酸盐玻璃光纤在中红外拉曼光纤激光光源研制方面的应用潜力。主要介绍了氟化物、硫化物及碲酸盐玻璃光纤材料的特点及相应的拉曼激光光源的相关研究进展,并对其未来发展趋势进行了展望。
拉曼激光 红外和远红外激光 光纤激光 光纤材料 Raman laser infrared and far-infrared lasers fiber lasers fiber materials 
红外与激光工程
2023, 52(5): 20230228
作者单位
摘要
吉林大学电子科学与工程学院集成光电子学国家重点实验室,吉林 长春 130012

高功率中红外光纤激光器在基础科学研究、大气通信、环境监测和**安全等领域有着重要应用。拉曼光纤激光技术是实现中红外激光的一种重要手段,通过级联拉曼运转可在光纤透过窗口内输出任意波长激光。目前,以碲酸盐、氟化物或硫系玻璃光纤作为拉曼增益介质,研究者分别研制出工作波长为3.77 μm的二级级联拉曼激光器和波长调谐范围覆盖2~4.3 μm的中红外拉曼孤子光纤激光光源。最近,本研究组制备出一种具有高稳定性、高抗激光损伤阈值、大拉曼频移和高拉曼增益系数的氟碲酸盐玻璃光纤,并以其作为拉曼增益介质,先后实现了波长调谐范围覆盖1.96~2.82 μm的中红外拉曼孤子激光以及~3 μm处的“拉曼孤子雨”,初步验证了该氟碲酸盐玻璃光纤在中红外拉曼光纤激光器方面的应用潜力。主要对国内外中红外拉曼光纤激光光源的研究进展进行了总结,介绍了碲酸盐、氟化物、硫系以及氟碲酸盐玻璃光纤材料的特点及相应的拉曼光纤激光器,并对发展趋势进行了展望。

激光器 拉曼激光 红外和远红外激光 光纤激光 光纤材料 
中国激光
2022, 49(1): 0101004
周亦诚 1,2覃治鹏 1,2,*谢国强 1,2,**
作者单位
摘要
1 上海交通大学物理与天文学院激光等离子体教育部重点实验室,上海 200240
2 上海交通大学IFSA协同创新中心,上海 200240

理论和实验研究了一种2.8 μm Er∶ZBLAN光纤孤子自压缩放大器。 放大器采用锁模Er∶ZBLAN光纤振荡器作为种子源,锁模脉冲宽度为240 fs,峰值功率为16.9 kW,重复频率为54.3 MHz。通过单级孤子自压缩放大,实验获得了脉冲宽度为110 fs、峰值功率达151 kW的中红外飞秒脉冲输出。

激光器 超快激光器 锁模激光器 激光放大器 红外和远红外激光器 
中国激光
2022, 49(1): 0101009
王泽锋 1,2,3,*周智越 1崔宇龙 1黄威 1[ ... ]李昊 1
作者单位
摘要
1 国防科技大学前沿交叉学科学院, 湖南 长沙 410073
2 脉冲功率激光技术国家重点实验室, 湖南 长沙 410073
3 高能激光技术湖南省重点实验室, 湖南 长沙 410073
粒子数反转和受激拉曼散射是实现光纤气体激光器输出的最常见的两种基本原理。与光纤气体拉曼激光光源不同,基于粒子数反转原理的光纤气体激光器是通过气体分子振转能级的本征吸收跃迁实现激光输出。由于绝大多数气体分子的振转能级对应的激射跃迁谱线都在中红外波段,这种激光器的输出波长基本都在中红外波段。简要分析了基于粒子数反转原理的光纤气体激光器在产生中红外波段激光方面的优势,重点回顾了其发展历史与研究现状,并对下一步的发展趋势进行了展望。
激光器 红外和远红外激光器 分子气体激光器 空芯光纤 
中国激光
2021, 48(4): 0401009
Minqiang Kang 1Ying Deng 1,2,3Xiongwei Yan 1Xiaoming Zeng 1,2,3[ ... ]Qihua Zhu 1,2,3,**
Author Affiliations
Abstract
1 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
2 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
3 Science and Technology on Plasma Physics Laboratory, Mianyang 621900, China
4 Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
5 Graduate School of China Academy of Engineering Physics, Beijing 100088, China
We report an efficient mid-infrared extracavity optical parametric oscillator (OPO) based on the nonlinear crystal BaGa4Se7 pumped by a diode-side-pumped Q-switched Nd:Y3Al5O12 (Nd:YAG) laser. The maximum pulse energy of 1.03 mJ at 4.25 μm is obtained with the repetition rate of 10 Hz and pulse width of 12.6 ns when the pump energy was 13.5 mJ, corresponding to an optical-to-optical conversion efficiency of 7.6% from 1.064 μm to 4.25 μm. The idler wave slope conversion efficiency was 12%. To the best of our knowledge, it is the highest reported conversion efficiency for the compact BaGa4Se7 OPO driven by the Nd:YAG laser.
140.3070 Infrared and far-infrared lasers 190.4970 Parametric oscillators and amplifiers 
Chinese Optics Letters
2019, 17(12): 121402
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, China
3 Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China
4 Luoyang Electronic Equipment Test Center of China, Key Laboratory of Electro-Optical Countermeasures Test & Evaluation Technology, Luoyang 471003, China
We report here on a diode-pumped pulsed mid-infrared laser source based on gas-filled hollow-core fibers (HCFs) towards an all-fiber structure by the tapering method. The pump laser is coupled into an acetylene-filled HCF through a tapered single-mode fiber. By precisely tuning the wavelength of the diode to match different absorption lines of acetylene near 1.5 μm, mid-infrared emission around 3.1–3.2 μm is generated. With 2 m HCFs and 3 mbar acetylene gas, a maximum average power of 130 mW is obtained with a laser slope efficiency of ~24%. This work provides a potential scheme for all-fiber mid-infrared fiber gas lasers.
140.3070 Infrared and far-infrared lasers 140.3510 Lasers, fiber 140.4130 Molecular gas lasers 
Chinese Optics Letters
2019, 17(9): 091402
Author Affiliations
Abstract
1 School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao 266237, China
2 Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), Department of Applied Physics, Beihang University, Beijing 100191, China
3 Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
4 State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, China
5 Key Laboratory of Transparent and Opto-Functional Inorganic Materials, Artificial Crystal Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
6 School of Physics Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 200092, China
A dual-wavelength synchronously mode-locked homogeneously broadened bulk laser operating at 1985.6 and 1989 nm is presented for the first time, to the best of our knowledge, which delivers a maximum output power of 166 mW and a repetition rate of 85 MHz. The pulse duration was measured to be 16.8 ps by assuming a sech2 pulse shape. The recorded autocorrelation trace showed frequency beating signals with an interval of 3.8 ps and a full width at half-maximum duration of 2 ps, corresponding to an ultrahigh beating frequency of about 0.26 THz, which agrees well with the frequency difference of the emitted two spectral peaks. The results indicated that such a kind of dual-wavelength mode-locked Tm:YAlO3 laser could be potentially used for generating terahertz radiations.
140.4050 Mode-locked lasers 140.3580 Lasers, solid-state 140.3070 Infrared and far-infrared lasers 
Chinese Optics Letters
2019, 17(9): 091401
Author Affiliations
Abstract
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
We demonstrate a Fe:ZnSe laser gain-switched by a ZnGeP2 optical parametric oscillator (OPO) under the pulse repetition frequency of 1 kHz at room temperature. The 2.9 μm signal light of the OPO is employed as the pump for the Fe:ZnSe laser. The maximum output power of the Fe:ZnSe laser is 58 mW with the pulse duration of 2.7 ns under the incident pump power of 280 mW, corresponding to a peak pulse power of 21.5 kW and an optical-to-optical efficiency of 20.7%. The spectrum of the Fe:ZnSe laser has a range of 4030.2–4593.6 nm with a dip at 4187.1–4340.4 nm due to the absorption of CO2.
140.3070 Infrared and far-infrared lasers 140.3295 Laser beam characterization 
Chinese Optics Letters
2019, 17(8): 081404
Author Affiliations
Abstract
1 School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, Qingdao 266237, China
2 Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Gold nanorods (GNRs) with two different aspect ratios were successfully utilized as saturable absorbers (SAs) in a passively Q-switched neodymium-doped lutetium lithium fluoride (Nd:LLF) laser emitting at 1.34 μm. Based on the GNRs with an aspect ratio of five, a maximum output power of 1.432 W was achieved, and the narrowest pulse width was 328 ns with a repetition rate of 200 kHz. But, in the case of the GNRs with the aspect ratio of eight, a maximum output power of 1.247 W was achieved, and the narrowest pulse width was 271 ns with a repetition rate of 218 kHz. Our experimental results reveal that the aspect ratios of GNRs have different saturable absorption effects at a specific wavelength. In other words, for passively Q-switched lasers at a given wavelength, we are able to select the most suitable GNRs as an SA by changing their aspect ratio.
140.3480 Lasers, diode-pumped 140.3540 Lasers, Q-switched 140.3070 Infrared and far-infrared lasers 
Chinese Optics Letters
2019, 17(4): 041401
Author Affiliations
Abstract
1 Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
2 Department of Dermatology, Qianfoshan Hospital of Shandong Province, Jinan 250014, China
Two-dimensional (2D) materials have attracted intense attention in photonics and optoelectronics for their excellent nonlinear characteristics and are applied for the generation of laser pulses. Here, an active–passive Nd:GdVO41.3 μm laser is realized by using an acousto-optic modulator and gold nanobipyramids absorber. The pulse width of 150.5 ns is obtained in the doubly Q-switched laser. The compression ratio and enhancement time are 82.6% and 16. The doubly Q-switched technology compresses the pulse width, improves the peak power, and stabilizes the pulse, illustrating that double modulation technology opens the door of controllable ultrafast lasers based on 2D materials.
140.3070 Infrared and far-infrared lasers 140.3380 Laser materials 140.3480 Lasers, diode-pumped 
Chinese Optics Letters
2019, 17(2): 020003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!