首页 > 论文 > 激光与光电子学进展 > 55卷 > 11期(pp:110601--1)

不同封装方式的光纤光栅传感与温补特性

Sensing and Temperature-Compensation Characteristics of Fiber Bragg Gratings Under Different Packaging Ways

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光纤光栅的粘贴封装工艺对传感器的性能有重要影响。目前光纤光栅传感器设计中最常用的两种封装方式分别是将光栅全部粘贴后进行封装以及将光栅预拉伸后对光栅两端进行粘贴封装。在这两种封装方式下,对光纤光栅的测量灵敏度、线性、重复性、蠕变、温度补偿等决定传感器核心性能的参数开展了实验研究。每种封装方式下,均将3支参数相同的光纤光栅布置在同一等强度梁上,并布置1支自由状态的裸光栅作为温度参考,开展应变感测特性和温度补偿特性方面的对比实验。实验结果表明,两种封装方式下的6支光纤光栅在灵敏度、线性、重复性方面均具备良好的一致性及抗蠕变能力;温度补偿测试中,同种封装方式的光栅自差分补偿的效果明显优于参考裸栅的差分补偿结果;光栅两点粘贴封装方式的自差分补偿效果最好,达到9 pm以内,优于光栅全部粘贴封装的结果(小于20 pm);光栅两端粘贴封装与参考裸栅差分补偿的效果最差,最大达53 pm。

Abstract

The packaging technology of fiber Bragg gratings (FBG) has a significant impact on sensor performance. So far, two packaging methods most commonly used in the design of FBG sensors are the packaging after all grating pasting and the two-end pasting-packaging after grating pretension. As for these two packaging ways, the key parameters determining the performance of a sensor, such as sensitivity, linearity, repeatability, creep and temperature-compensation, are investigated experimentally. For each packaging way, three FBGs with the same parameters are arranged on the same equal-strength cantilever. A free and bare grating is used as a temperature reference for a contrast experiment of strain sensitivity and temperature-compensation characteristics. The experimental results show that the six FBGs under the two packaging ways have good consistency in sensitivity, linearity and repeatability, and also good creep resistance. In the test of temperature-compensation, the grating self-differential compensation effect under the same packaging way is superior to the differential compensation from the reference bare FBG. The self-differential compensation effect under the two-end pasting packaging way is the best with the wavelength shift difference less than 9 pm, better than that under the packaging way after all grating pasting (within 20 pm). In contrast, the differential compensation effect under the two-end pasting-packaging way from the reference bare grating is the worst with the maximum value up to 53 pm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP242;TP212

DOI:10.3788/LOP55.110601

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(51605348,51605344)、湖北省自然科学基金(2016CFB116)

收稿日期:2018-04-09

修改稿日期:2018-05-15

网络出版日期:2018-05-28

作者单位    点击查看

郭永兴:武汉科技大学冶金装备及其控制教育部重点实验室, 湖北 武汉 430081
匡毅:武汉科技大学机械传动与制造工程湖北省重点实验室, 湖北 武汉 430081
熊丽:武汉科技大学冶金装备及其控制教育部重点实验室, 湖北 武汉 430081
刘文龙:武汉科技大学机械传动与制造工程湖北省重点实验室, 湖北 武汉 430081
吴恒:武汉科技大学机械传动与制造工程湖北省重点实验室, 湖北 武汉 430081

联系人作者:匡毅(yongxing_guo@wust.edu.cn); 郭永兴(kuangyi1993@163.com);

【1】Guo Y X, Zhang D S, Fu J J, et al. Development and operation of a fiber Bragg grating based online monitoring strategy for slope deformation[J]. Sensor Review, 2015, 35(4): 348-356.

【2】Wang Q N, Yang Y H, He J, et al. Study of fiber Bragg grating regeneration process and regeneration model[J]. Acta Optica Sinica, 2016, 36(3): 0306001.
王巧妮, 杨远洪, 何俊, 等. 光纤布拉格光栅再生过程及模型研究[J]. 光学学报, 2016, 36(3): 0306001.

【3】Sun S Q, Chu F H, Lu J Y. Progress in cross sensitivity of fiber Bragg grating sensor[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040006.
孙诗晴, 初凤红, 卢家焱. 光纤布拉格光栅传感器交叉敏感问题的研究进展[J]. 激光与光电子学进展, 2017, 54(4): 040006.

【4】Ding X D, Zhang Y M, Song Y M, et al. Response characteristics of pure-quartz-core fiber Bragg grating under high temperature strain[J]. Chinese Journal of Lasers, 2017, 44(11): 1106003.
丁旭东, 张钰民, 宋言明, 等. 纯石英芯光纤光栅高温应变响应特性[J]. 中国激光, 2017, 44(11): 1106003.

【5】Gou Y X, Xiong L, Kong J Y, et al. Sliding type fiber Bragg grating displacement sensor[J]. Optics and Precision Engineering, 2017, 25(1): 50-58.
郭永兴, 熊丽, 孔建益, 等. 滑动式光纤布拉格光栅位移传感器[J]. 光学 精密工程, 2017, 25(1): 50-58.

【6】Li J C, Neumann H, Ramalingam R. Design, fabrication, and testing of fiber Bragg grating sensors for cryogenic long-range displacement measurement[J]. Cryogenics, 2015, 68: 36-43.

【7】Wang J Y, Jiang L, Sun Z R, et al. Research on the surface subsidence monitoring technology based on fiber Bragg grating sensing[J]. Photonic Sensors, 2017, 7(1): 20-26.

【8】Zhao Z G, Zhang Y J, Li C, et al. Monitoring of coal mine roadway roof separation based on fiber Bragg grating displacement sensors[J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 74: 128-132.

【9】Mi H K, Nan Q M. Study on magnetic coupling FBG displacement sensor[C]∥International Conference on Mechatronics and Automation, August 7-10, Beijing, China. New York: IEEE, 2011: 2443-2447.

【10】Li T L, Tan Y G, Shi C Y, et al. A high-sensitivity fiberBragg grating displacement sensor based on transverse property of a tensioned optical fiber configuration and its dynamic performance improvement[J]. IEEE Sensors Journal, 2017, 17(18): 5840-5848.

【11】Li T L, Tan Y G, Zhou Z D, et al. A non-contact FBG vibration sensor with double differential temperature compensation[J]. Optical Review, 2016, 23(1): 26-32.

【12】Wang J F, Yu Y, Chen Y, et al. Research of a double fiber Bragg gratings vibration sensor with temperature and cross axis insensitive[J]. Optik - International Journal for Light and Electron Optics, 2015, 126(7/8):749-753.

【13】Li T L, Tan Y G, Zhou Z D. String-type based two-dimensional fiber Bragg grating vibration sensing principle and structure optimization[J]. Sensors & Actuators A Physical, 2017, 259: 85-95.

【14】Li T L, Shi C Y, Tan Y G, et al. A diaphragm type fiber Bragg grating vibration sensor based on transverse property of optical fiber with temperature compensation[J]. IEEE Sensors Journal, 2017, 17(4): 1021-1029.

【15】Guo Y X, Zhang D S, Li J Y, et al. Two dimensional fiber Bragg grating accelerometer[J]. Chinese Journal of Lasers, 2012, 39(12): 1214001.
郭永兴, 张东生, 李杰燕, 等. 光纤光栅二维加速度传感器[J]. 中国激光, 2012, 39(12): 1214001.

【16】Zeng Y J, Wang J, Yang H Y, et al. Fiber Bragg grating accelerometer based on L-shaped rigid beam and elastic diaphragm for low-frequency vibration measurement[J]. Acta Optica Sinica, 2015, 35(12): 1206005.
曾宇杰, 王俊, 杨华勇, 等. 基于L形刚性梁与弹性膜片结构的低频光纤光栅加速度传感器[J]. 光学学报, 2015, 35(12): 1206005.

【17】Huang J, Zhou Z D, Wen X Y, et al. A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation[J]. Measurement, 2013, 46(3): 1041-1046.

【18】Pachava V R, Kamineni S, Madhuvarasu S S, et al. FBG based high sensitive pressure sensor and its low-cost interrogation system with enhanced resolution[J]. Photonic Sensors, 2015, 5(4): 321-329.

【19】Liang M F, Fang X Q, Wu G, et al. A fiber Bragg grating pressure sensor with temperature compensation based on diaphragm-cantilever structure[J]. Optik - International Journal for Light and Electron Optics, 2017, 145: 503-512.

【20】Zhang K Y, Zhao H, Zhang W C, et al. Fiber Bragg grating electrostatic voltage sensor based on uniform strain beam[J]. Acta Optica Sinica, 2015, 35(3): 0306003.
张开玉, 赵洪, 张伟超, 等. 基于等应变梁的光纤光栅静电电压传感器[J]. 光学学报, 2015, 35(3): 0306003.

引用该论文

Guo Yongxing,Kuang Yi2,Xiong Li,Liu Wenlong,Wu Heng. Sensing and Temperature-Compensation Characteristics of Fiber Bragg Gratings Under Different Packaging Ways[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110601

郭永兴,匡毅,熊丽,刘文龙,吴恒. 不同封装方式的光纤光栅传感与温补特性[J]. 激光与光电子学进展, 2018, 55(11): 110601

被引情况

【1】韩笑笑,员 琳,樊琳琳,张 峰,辛 明,杨濠琨,张锦龙. FBG封装材料热膨胀系数对温度传感精度的影响. 半导体光电, 2019, 40(3): 375-379

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF