作者单位
摘要
1 武汉科技大学 冶金装备及其控制教育部重点实验室,湖北武汉43008
2 武汉科技大学 机械传动与制造工程湖北省重点实验室,湖北武汉430081
3 武汉科技大学 精密制造研究院,湖北武汉40081
仿生扑翼飞行机器人的扑动变形测量对提高其飞行性能非常重要,而现有的数值仿真、立体视觉摄像和结构光投影等测量方法,存在边界条件难以确定、视觉遮挡等问题,因此提出了一种基于光纤光栅的接触式扑翼动态变形测量方法。设计了一种以聚酰亚胺薄膜为基底的光纤光栅柔性传感器,将柔性传感器以阵列的形式布设在扑翼表面监测翼面扑动的实时应变,并基于曲率的三维重建算法将实时应变数据重构为扑翼的实时三维形状。成功监测了一个室内稳定扑动周期内翼面的应变变化情况并开展三维变形分析,结果表明:扑翼扑动时翼面应变主要发生在支撑杆周围,下扑和上扑阶段的应变最大值分别为-50.6 με和98.1 με;翼面变形主要发生在翼面后缘,下扑和上扑阶段的变形最大值分别为-2.06 mm和4.02 mm。本研究为扑翼动态变形测量提供了技术支持,为提高扑翼机飞行性能提供了科学依据。
光纤传感 光纤布拉格光栅 扑翼机器人 三维重构 变形监测 optical fiber sensing fiber Bragg grating flapping wing robot three-dimensional reconstruction deformation monitoring 
光学 精密工程
2023, 31(9): 1304
作者单位
摘要
1 武汉科技大学冶金装备及其控制教育部重点实验室,湖北 武汉 430081
2 武汉科技大学机械传动与制造工程湖北省重点实验室,湖北 武汉 430081
3 武汉科技大学精密制造研究院,湖北 武汉 430081
提出了一种基于光纤布拉格光栅(FBG)的增敏型索力传感器。该传感器的基体为圆柱环状弹性体,3组回字梁间隔120°布置在圆环上,6个FBG分3组按顺序粘贴在回字形梁上,同时在传感器基体上粘贴1个FBG进行对比实验。采用有限元分析方法研究弹性体的应变分布特征,用3组FBG波长漂移量的差值作为传感器的输出信号,实现对锚索应力的测量和温度补偿。压力测试结果表明,基体上FBG的输出信号灵敏度为0.75 pm/kN,而回字梁上FBG输出信号的灵敏度为33.53 pm/kN,增敏效果显著且传感器具有良好的线性度和温度补偿能力。
传感器 锚索测力传感器 光纤布拉格光栅 增敏型索力传感器 
激光与光电子学进展
2023, 60(5): 0506001
作者单位
摘要
1 武汉科技大学 冶金装备及其控制教育部重点实验室,湖北武汉43008
2 武汉科技大学 机械传动与制造工程湖北省重点实验室,湖北武汉430081
软体机器人运行中的形状信息反馈对机器人精准操控非常重要,由于其柔性的躯体特性,对搭载的形状测量传感器的柔顺性同样要求很高,为此面向软件机器人的光纤光栅柔性传感,提出了一种基于双层正交光纤布拉格光栅的可实现三维形状测量的柔性传感器,阐述了传感器的结构组成和测量原理,制备了由两层4×4光纤布拉格光栅阵列组成的传感器原型。对该传感器进行横向和纵向的曲率标定,得到了波长漂移量与曲率之间的线性递增关系;随后开展了三维形状测量研究,通过测量空间传感点的曲率建立三维坐标系,将曲率信息转化为空间坐标信息,再通过对空间离散坐标点的插值拟合来重建被测物体表面的三维形状。该柔性形状传感器可实现对复杂曲面的三维形状感知,曲率测量误差为2.8%~4.5%。本文提供的光纤光栅柔性传感器可为软体机器人的形状测量提供技术支持。
光纤布拉格光栅 软体机器人 双层正交 形状传感 fiber Bragg grating soft robot double-layer orthogonal shape sensing 
光学 精密工程
2021, 29(10): 2306
作者单位
摘要
1 武汉科技大学冶金装备及其控制教育部重点实验室,湖北 武汉 430081
2 武汉科技大学机械传动与制造工程湖北省重点实验室,湖北 武汉 430081
3 武汉科技大学机器人与智能系统研究院,湖北 武汉 430081
提出了一种基于光纤光栅(FBG)的一体式三维加速度传感器。该传感器以十字梁为弹性体,采用有限元分析方法研究了弹性体的应变分布特征,5个光纤光栅按照特定的规则被封装在梁的表面。通过将两两组合的光纤光栅波长漂移量的差值作为传感器不同振动方向的输出信号,实现三维加速度的低耦合测量及温度补偿。振动测试结果表明,该传感器在xyz方向的谐振频率分别为2000,1920,1160 Hz,工作频带分别为20~1400 Hz、20~1300 Hz和10~800 Hz,在xyz方向的灵敏度分别为1.36,1.70,1.31 pm/g。该传感器具有良好的线性度、弱耦合性和温度补偿能力。
光纤光学 三维加速度传感器 光纤光栅 
激光与光电子学进展
2021, 58(21): 2106007
作者单位
摘要
1 武汉科技大学 冶金装备及其控制教育部重点实验室, 湖北 武汉 430081
2 武汉科技大学 机械传动与制造工程湖北省重点实验室, 湖北 武汉 430081
为了研究光纤布拉格光栅(Fiber Bragg Grating, FBG)在感知形状变形时, 低杨氏模量的柔性材料与高杨氏模量的刚性二氧化硅的结合是否存在刚-柔应变耦合引起的蠕变、应变传递差异等实际问题。采用软体机器人常用的硅胶和聚二甲基硅氧烷(polydimethylsiloxane, PDMS)材料, 制备了4个不同杨氏模量的软体基体, 在每个软体基体内植入了3个FBG, 形成4个具备形状测量能力的柔性传感器, 并进行弯曲测试, 然后建立应变传递模型验证了实验结果与理论推导的一致性。结果表明: 软体基体和FBG结合时存在刚-柔耦合引起的蠕滑问题, 约30 min后趋于耦合稳定。其次, 4个柔性传感器内的3支FBG耦合稳定后的波长漂移量均表现出较好的线性和一致性。此外, FBG与基体的刚-柔性差异越大, 耦合蠕滑越严重, 应变传递引起的波长漂移量越小。其中, 最大应变传递率为0.680, 最小应变传递率为0.260, 最大灵敏度为56.649, 最小灵敏度为35.668。研究结果为基于植入式光纤光栅的软体机器人形状测量技术的研究提供了科学参考。
光纤布拉格光栅 刚-柔应变耦合 应变传递差异 软体机器人 形状测量 Fiber Bragg Grating(FBG) rigid-flexible strain coupling difference of strain transfer soft robot shape measurement 
光学 精密工程
2020, 28(8): 1634
作者单位
摘要
1 华南理工大学广州学院电气工程学院, 广东 广州 510800
2 武汉科技大学冶金装备及其控制教育部重点实验室, 湖北 武汉 430081
3 中国水利水电第三工程局有限公司, 陕西 西安 710024
提出一种由双玻璃纤维薄片、石英光纤布拉格光栅,及两段玻璃纤维护管组成的,并采用高温胶黏剂封装的片式应变传感器。该传感器不含金属材料,不受强电力电磁干扰。制备出3个传感器原型,将其安装在等强度悬臂梁上进行全面的性能测试实验。测试结果表明:3个传感器均具有良好的测量重复性(误差小于3.43%)和线性(线性拟合系数均大于0.999),应变灵敏度一致性高;温度补偿误差在22 pm以内,补偿能力良好;还具有良好的抗蠕变性能。因此,所设计的传感器具有优越的测量性能,能够满足野外环境下电力设施的长期应变监测要求。
光纤光学 光纤布拉格光栅 应变传感器 玻璃纤维 安全监测 
激光与光电子学进展
2020, 57(9): 090601
作者单位
摘要
1 华南理工大学广州学院电气工程学院, 广东 广州 510800
2 武汉科技大学机械自动化学院, 湖北 武汉 430081
3 宁波良和路桥科技有限公司, 浙江 宁波 315201
4 武汉科技大学冶金装备及其控制教育部重点实验室, 湖北 武汉 430081
提出了一种基于嵌入式光纤光栅和碳纤维等强度梁的倾斜传感器。介绍了传感器的测量原理和制作方法,进行了全面的测试。研究结果表明,传感器在±30°量程内的倾斜测量灵敏度达到49.73 pm/(°),精度可达0.101°,测量重复性误差仅为0.62%,测量函数的线性拟合度达到0.99992,且抗蠕变和温度补偿能力良好,能满足复杂的电力环境下开展长期倾斜监测的要求。
光纤光学 光纤光栅 倾斜传感器 输电铁塔 倾斜监测 
激光与光电子学进展
2019, 56(8): 080602
作者单位
摘要
1 武汉科技大学冶金装备及其控制教育部重点实验室, 湖北 武汉 430081
2 武汉科技大学机械传动与制造工程湖北省重点实验室, 湖北 武汉 430081
光纤光栅的粘贴封装工艺对传感器的性能有重要影响。目前光纤光栅传感器设计中最常用的两种封装方式分别是将光栅全部粘贴后进行封装以及将光栅预拉伸后对光栅两端进行粘贴封装。在这两种封装方式下,对光纤光栅的测量灵敏度、线性、重复性、蠕变、温度补偿等决定传感器核心性能的参数开展了实验研究。每种封装方式下,均将3支参数相同的光纤光栅布置在同一等强度梁上,并布置1支自由状态的裸光栅作为温度参考,开展应变感测特性和温度补偿特性方面的对比实验。实验结果表明,两种封装方式下的6支光纤光栅在灵敏度、线性、重复性方面均具备良好的一致性及抗蠕变能力;温度补偿测试中,同种封装方式的光栅自差分补偿的效果明显优于参考裸栅的差分补偿结果;光栅两点粘贴封装方式的自差分补偿效果最好,达到9 pm以内,优于光栅全部粘贴封装的结果(小于20 pm);光栅两端粘贴封装与参考裸栅差分补偿的效果最差,最大达53 pm。
光纤光学 传感器 光纤布拉格光栅 封装方式 温度补偿 
激光与光电子学进展
2018, 55(11): 110601
Author Affiliations
Abstract
1 School of Communication, Shenzhen University, Shenzhen 518060, China
2 School of Political Science and Public Management, Wuhan University, Wuhan 430072, China
3 Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
4 Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
We report a fiber Bragg grating (FBG)-based sensor for the simultaneous measurement of a train bearing’s vibration and temperature. A pre-stretched optical fiber with an FBG and a mass is designed for axial vibration sensing. Another multiplexed FBG is embedded in a selected copper-based alloy with a high thermal expansion to detect temperature. Experiments show that the sensor possesses a high resonant frequency of 970 Hz, an acceleration sensitivity of 27.28 pm/g, and a high temperature sensitivity of 35.165 pm/°C. A resonant excitation test is also carried out that demonstrates the robustness and reliability of the sensor.
060.3735 Fiber Bragg gratings 060.2370 Fiber optics sensors 
Chinese Optics Letters
2018, 16(7): 070604
作者单位
摘要
1 武汉科技大学 机械自动化学院, 湖北 武汉 430081
2 武汉理工光科股份有限公司, 湖北 武汉 430223
3 天津工业大学 电子与信息工程学院天津市光电检测技术与系统重点实验室, 天津 300387
为克服现有光纤光栅位移传感器设计中存在的传力介质弹性系数易改变、滑块易产生偏移等对测量精度的不利影响, 提出了一种滑动式位移传感器。楔形滑块的滑动面和限制面的采样互相垂直、等强度梁的变截面和一体化、滑动面圆弧化等特殊设计, 使传感器具有抗滑动干扰性、梁挠位移测量的高灵敏性、长期往复测量的耐磨性等优点。阐述了传感器测量原理, 加工制造了传感器原型, 并开展了全面的性能测试。测试结果和误差分析表明: 传感器在0~100 mm 的量程中, 灵敏度为20.11 pm/mm, 精度达到0.099 5% F.S, 具备良好的微位移测量能力; 重复性误差和迟滞误差分别仅为0.705%和0.403%, 且抗蠕变性能良好, 可满足机械装备、土木工程等重大设施的结构健康监测对位移、变形测量的精度和长期稳定性要求。
光纤传感器 光纤Bragg光栅(FBG) 位移传感器 悬臂梁 等强度梁 optical fiber sensor fiber Bragg grating (FBG) displacement sensor cantilever equal-strength beam 
光学 精密工程
2017, 25(1): 50

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!