首页 > 论文 > 光学学报 > 38卷 > 12期(pp:1230001--1)

基于2.73 μm分布反馈式激光器同时在线测量呼出气体中的CO2和水汽

Simultaneous On-Line Measurement of Exhaled Carbon Dioxide and Water Vapor Based on 2.73 μm Distributed Feedback Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

人体呼出气体中CO2和水汽的浓度变化与身体状况密切相关,因此对其浓度进行检测具有重要意义。提出一种基于2.73 μm分布反馈式激光器的呼出气体检测装置,选取3659.402 cm-1和3659.934 cm-1处的谱线,利用波长调制光谱技术分别对人体呼出气体中的CO2和水汽同时进行测量。结果表明:利用二次谐波信号对气体浓度进行定标,当CO2和水汽的体积分数分别小于35%和2.3%时,线性度分别达到0.99945和0.99679;对呼吸循环过程中CO2和水汽的浓度进行实时测量,积分时间为0.92 s时,探测灵敏度分别为4.33×10-3和1.37×10-4;在采集时间为56.8 s时,CO2的探测精度为0.12%,在最佳积分时间为17 min时,CO2的探测极限可达到1.49×10-4。

Abstract

The concentration changes of exhaled carbon dioxide and water vapor are closely related to the physical condition. Therefore, it is of great significance to detect their concentrations. An exhaled gas detection device based on a 2.73 μm distributed feedback laser is proposed. Spectral lines at 3659.402 cm-1 and 3659.934 cm-1 are selected to measure carbon dioxide and water vapor respectively by using the wavelength modulation spectroscopy. The results show that using the second harmonic signal to calibrate the gas concentration, the linearity of 0.99945 and 0.99679 is obtained when the volume fractions of carbon dioxide and water vapor are less than 35% and 2.3%, respectively. The concentrations of carbon dioxide and water vapor during the respiratory cycle are measured in real time. With the measurement time of 0.92 s, the sensor achieves a detection sensitivity of 4.33×10-3 and 1.37×10-4 for carbon dioxide and water vapor, respectively. At the acquisition time of 56.8 s, the detection accuracy with 0.12% of carbon dioxide is achieved, and a detection limit of 1.49×10-4 at the optimal integration time of 17 min is achieved for carbon dioxide measurement.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/aos201838.1230001

所属栏目:光谱学

基金项目:国家自然科学基金(41265011)、江西省科技厅重点研发计划(20171BBG70003)、人社部留学人员科技活动项目择优资助项目

收稿日期:2018-06-13

修改稿日期:2018-07-08

网络出版日期:2018-07-18

作者单位    点击查看

吴涛:南昌航空大学测试与光电工程学院, 江西 南昌 330063
张怀林:南昌航空大学测试与光电工程学院, 江西 南昌 330063
孔维平:南昌航空大学测试与光电工程学院, 江西 南昌 330063
何兴道:南昌航空大学测试与光电工程学院, 江西 南昌 330063
陈忠平:南昌航空大学测试与光电工程学院, 江西 南昌 330063
陈卫东:法国滨海大学大气化学物理实验室, 法国 敦克尔克 59140

联系人作者:吴涛(wutccnu@nchu.edu.cn)

【1】Wojtas J, Bielecki Z, Stacewicz T, et al. Ultrasensitive laser spectroscopy for breath analysis[J]. Opto-Electronics Review, 2012, 20(1): 26-39.

【2】Stacewicz T, Bielecki Z, Wojtas J, et al. Detection of disease markers in human breath with laser absorption spectroscopy[J]. Opto-Electronics Review, 2016, 24(2): 82-94.

【3】Wang C J, Sahay P. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits[J]. Sensors, 2009, 9(10): 8230-8262.

【4】Jiang C Y, Sun M X, Li Y X, et al. Breath analysis using laser spectroscopy techniques: development and future[J]. Chinese Journal of Lasers, 2018, 45(2): 0207015.
姜琛昱, 孙美秀, 李迎新, 等. 激光光谱技术在呼出气体分析中的发展与未来[J]. 中国激光, 2018, 45(2): 0207015.

【5】Risby T H, Solga S F. Current status of clinical breath analysis[J]. Applied Physics B, 2006, 85(2/3): 421-426.

【6】Koletzko B, Sauerwald T, Demmelmair H. Safety of stable isotope use[J]. European Journal of Pediatrics, 1997, 156(S1): S12-S17.

【7】Vogt J A, Nahoussi N, Fabinski W, et al. Optimised NDIR technology for 13CO2 breath tests of i.e. drug/drug-interactions or gastric emptying for intensive care patients: new diagnostic opportunities[C]∥Dssel O, Schlegel W C. Proceedings of World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany. Heidelberg: Springer, 2009: 851-854.

【8】Namjou K, Roller C B, Reich T E, et al. Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy[J]. Applied Physics B, 2006, 85(2/3): 427-435.

【9】Vincent T A, Urasinska-Wojcik B, Gardner J W. Development of a low-cost NDIR system for ppm detection of carbon dioxide in exhaled breath analysis[J]. Procedia Engineering, 2015, 120: 388-391.

【10】Gao Y W, Zhang Y J, Chen D, et al. Measurement of oxygen concentration using tunable diode laser absorption spectroscopy[J]. Acta Optica Sinica, 2016, 36(3): 0330001.
高彦伟, 张玉钧, 陈东, 等. 基于可调谐半导体激光吸收光谱的氧气浓度测量研究[J]. 光学学报, 2016, 36(3): 0330001.

【11】Liu X C, Zhang G Y, Huang Y, et al. Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm[J]. Applied Physics B, 2018, 124(4): 61.

【12】Patterson C S, McMillan L C, Longbottom C, et al. Portable optical spectroscopy for accurate analysis of ethane in exhaled breath[J]. Measurement Science and Technology, 2007, 18(5): 1459-1464.

【13】Roller C, Namjou K, Jeffers J, et al. Simultaneous NO and CO2 measurement in human breath with a single IV-VI mid-infrared laser[J]. Optics Letters, 2002, 27(2): 107-109.

【14】Hartmann A, Strzoda R, Schrobenhauser R, et al. CO2 sensor for mainstream capnography based on TDLAS[J]. Applied Physics B, 2014, 116(4): 1023-1026.

【15】Hartmann A, Strzoda R, Schrobenhauser R, et al. Ultra-compact TDLAS humidity measurement cell with advanced signal processing[J]. Applied Physics B, 2014, 115(2): 263-268.

【16】Xiong B, Du Z H, Liu L, et al. Hollow-waveguide-based carbon dioxide sensor for capnography[J]. Chinese Optics Letters, 2015, 13(11): 111201.

【17】Tütüncü E, Kokoric V, Wilk A, et al. Fiber-coupled substrate-integrated hollow waveguides: an innovative approach to mid-infrared remote gas sensors[J]. ACS Sensors, 2017, 2(9): 1287-1293.

【18】Weidmann D, Kosterev A A, Tittel F K, et al. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2004, 29(16): 1837-1839.

【19】Bartlome R, Sigrist M W. Laser-based human breath analysis: D/H isotope ratio increase following heavy water intake[J]. Optics Letters, 2009, 34(7): 866-868.

【20】Stamyr K, Vaittinen O, Jaakola J, et al. Background levels of hydrogen cyanide in human breath measured by infrared cavity ring down spectroscopy[J]. Biomarkers, 2009, 14(5): 285-291.

【21】Reid J, Labrie D. Second-harmonic detection with tunable diode lasers—comparison of experiment and theory[J]. Applied Physics B, 1981, 26(3): 203-210.

【22】Sun K, Chao X, Sur R, et al. Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing[J]. Applied Physics B, 2013, 110(4): 497-508.

【23】Li H J, Rieker G B, Liu X, et al. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases[J]. Applied Optics, 2006, 45(5): 1052-1061.

【24】Gordon I E, Rothman L S, Hill C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3-69.

【25】Zhou C, Liu N W, He T B, et al. Application of wavelet threshold denoising technique in expired gas analysis based on laser spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(11): 1111003.
周超, 刘宁武, 何天博, 等. 小波阈值去噪技术在呼出气体激光光谱诊断中的应用研究[J]. 中国激光, 2017, 44(11): 1111003.

【26】Werle P, Mücke R, Slemr F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS)[J]. Applied Physics B, 1993, 57(2): 131-139.

引用该论文

Wu Tao,Zhang Huailin,Kong Weiping,He Xingdao,Chen Zhongping,Chen Weidong. Simultaneous On-Line Measurement of Exhaled Carbon Dioxide and Water Vapor Based on 2.73 μm Distributed Feedback Laser[J]. Acta Optica Sinica, 2018, 38(12): 1230001

吴涛,张怀林,孔维平,何兴道,陈忠平,陈卫东. 基于2.73 μm分布反馈式激光器同时在线测量呼出气体中的CO2和水汽[J]. 光学学报, 2018, 38(12): 1230001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF