首页 > 论文 > Photonics Research > 7卷 > 1期(pp:69-79)

Optically induced rotation of Rayleigh particles by arbitrary photonic spin

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文


Optical trapping techniques hold great interest for their advantages that enable direct handling of nanoparticles. In this work, we study the optical trapping effects of a diffraction-limited focal field possessing an arbitrary photonic spin and propose a convenient method to manipulate the movement behavior of the trapped nanoparticles. In order to achieve controllable spin axis orientation and ellipticity of the tightly focused beam in three dimensions, an efficient method to analytically calculate and experimentally generate complex optical fields at the pupil plane of a high numerical aperture lens is developed. By numerically calculating the optical forces and torques of Rayleigh particles with spherical/ellipsoidal shape, we demonstrate that the interactions between the tunable photonic spin and nanoparticles lead to not only 3D trapping but also precise control of the nanoparticles’ movements in terms of stable orientation, rotational orientation, and rotation frequency. This versatile trapping method may open up new avenues for optical trapping and their applications in various scientific fields.



所属栏目:Nanophotonics and Photonic Crystals

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (11504049, 11474052, 11774055); Natural Science Foundation of Jiangsu Province10.13039/501100004608, China (BK20150593); National Key Basic Research Program of China (2015CB352002).




作者单位    点击查看

Guanghao Rui:Advanced Photonics Center, Southeast University, Nanjing 210096, China
Ying Li:Advanced Photonics Center, Southeast University, Nanjing 210096, China
Sichao Zhou:Department of Electro-Optics and Photonics, University of Dayton, Dayton, Ohio 45469, USA
Yusong Wang:Advanced Photonics Center, Southeast University, Nanjing 210096, China
Bing Gu:Advanced Photonics Center, Southeast University, Nanjing 210096, China
Yiping Cui:Advanced Photonics Center, Southeast University, Nanjing 210096, Chinae-mail: cyp@seu.edu.cn
Qiwen Zhan:Department of Electro-Optics and Photonics, University of Dayton, Dayton, Ohio 45469, USASchool of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, Chinae-mail: qzhan1@udayton.edu

联系人作者:Yiping Cui(cyp@seu.edu.cn); Qiwen Zhan(qzhan1@udayton.edu);

【1】A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11 , 288–290 (1986).

【2】M. A. El-Sayed, “Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals,” Acc. Chem. Res. 37 , 326–333 (2004).

【3】M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34 , 257–264 (2001).

【4】D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6 , e17039 (2017).

【5】D. G. Grier, “A revolution in optical manipulation,” Nature 424 , 810–816 (2003).

【6】A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2 , 365–370 (2008).

【7】K. C. Neuman, and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75 , 2787–2809 (2004).

【8】A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88 , 053601 (2002).

【9】Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99 , 073901 (2007).

【10】J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5 , 531–534 (2011).

【11】J. J. Sáenz, “Laser tractor beams,” Nat. Photonics 5 , 514–515 (2011).

【12】G. Rui, and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3 , 351–361 (2014).

【13】G. Rui, X. Wang, B. Gu, Q. Zhan, and Y. Cui, “Manipulation metallic nanoparticle at resonant wavelength using engineered azimuthally polarized optical field,” Opt. Express 24 , 7212–7223 (2016).

【14】X. Wang, G. Rui, L. Gong, B. Gu, and Y. Cui, “Manipulation of resonant metallic nanoparticle using 4Pi focusing system,” Opt. Express 24 , 24143–24152 (2016).

【15】G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photonics 5 , 48–51 (2011).

【16】J. Glückstad, “Sculpting the object,” Nat. Photonics 5 , 7–8 (2011).

【17】M. Li, S. Yan, B. Yao, M. Lei, Y. Yang, J. Min, and D. Dan, “Trapping of Rayleigh spheroidal particles by highly focused radially polarized beams,” J. Opt. Soc. Am. B 32 , 468–472 (2015).

【18】M. Li, S. Yan, B. Yao, Y. Liang, G. Han, and P. Zhang, “Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations,” J. Opt. Soc. Am. A 33 , 1341–1347 (2016).

【19】S. H. Simpson, and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84 , 053808 (2011).

【20】C. B. Chang, W.-X. Huang, K. H. Lee, and H. J. Sung, “Optical levitation of a non-spherical particle in a loosely focused Gaussian beam,” Opt. Express 20 , 24068–24084 (2012).

【21】J. Wu, Y. Li, D. Lu, Z. Liu, Z. Cheng, and L. He, “Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30 , 89–95 (2009).

【22】S. Bayoudh, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50 , 1581–1590 (2003).

【23】D. P. Cherney, T. E. Bridges, and J. M. Harris, “Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy,” Anal. Chem. 76 , 4920–4928 (2004).

【24】S. H. Simpson, and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24 , 430–443 (2007).

【25】J. Chen, C. Wan, L. Kong, and Q. Zhan, “Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum,” Opt. Express 25 , 8966–8974 (2017).

【26】J. Chen, C. Wan, L. Kong, and Q. Zhan, “Tightly focused optical field with controllable photonic spin orientation,” Opt. Express 25 , 19517–19528 (2017).

【27】A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005).

【28】B. Richards, and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 253 , 358–379 (1959).

【29】M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

【30】M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, “Measuring the transverse spin density of light,” Phys. Rev. Lett. 114 , 063901 (2015).

【31】W. Han, Y. Yang, W. Cheng, and Q. Zhan, “Vectorial optical field generator for the creation of arbitrarily complex fields,” Opt. Express 21 , 20692–20706 (2013).

【32】P. C. Chaumet, and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25 , 1065–1067 (2000).

【33】B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333 , 848–872 (1988).

【34】L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of Continuous Media (Elsevier, 1984).

【35】A. Hinojosa-Alvarado, and J. C. Gutiérrez-Vega, “Geometrical optics calculation of forces and torques produced by a ringed beam on a prolate spheroid,” J. Opt. Soc. Am. B 27 , 1651–1658 (2010).

【36】F. G. Mitri, “Optical Bessel beam illumination of a subwavelength prolate gold (Au) spheroid coated by a layer of plasmonic material: radiation force, spin and orbital torques,” J. Phys. Commun. 1 , 015001 (2017).

【37】K. Svoboda, and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19 , 930–932 (1994).

【38】S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102 , 113602 (2009).

【39】M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23 , 1–3 (1998).

【40】H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155 , 169–179 (1998).

【41】J. W. Liaw, Y. S. Chen, and M. K. Kuo, “Spinning gold nanoparticles driven by circularly polarized light,” J. Quant. Spectrosc. Radiat. Transfer 175 , 46–53 (2016).


Guanghao Rui, Ying Li, Sichao Zhou, Yusong Wang, Bing Gu, Yiping Cui, and Qiwen Zhan, "Optically induced rotation of Rayleigh particles by arbitrary photonic spin," Photonics Research 7(1), 69-79 (2019)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF