首页 > 论文 > 中国激光 > 46卷 > 4期(pp:402011--1)

低热输入脉冲激光修复高温合金液化裂纹研究

Liquation Cracks in Superalloys Repaired by Low-Heat Input Pulsed Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了K452高温合金激光增材修复时的开裂特性及液化裂纹产生机理, 采用低热输入脉冲激光工艺控制液化裂纹的产生, 研究了修复区域的显微组织和力学性能。结果表明, K452高温合金在激光增材修复过程中容易产生液化裂纹, 裂纹通常起源于热影响区且沿晶界向基体和修复区域扩展; 拉应力作用下热影响区晶界上的液膜形成了液化裂纹。低热输入脉冲激光工艺可以有效控制液化裂纹的产生, 脉冲激光修复试样修复区的平均硬度为267.9 HV; 抗拉强度和屈服强度分别为814.3 MPa和685.8 MPa, 略大于铸态基体的强度; 延伸率为4.87%, 略小于铸态基体的6.25%。低热输入脉冲激光工艺实现了无裂纹的开槽修复, 铸态修复试样强度达到了铸态基体的强度标准, 延伸率略低于铸态基体。

Abstract

The cracking characteristics and the liquation cracking mechanism of laser additive repaired K452 superalloys are explored. The low-heat input pulsed laser process is used to control the generation of liquation cracks, and the microstructures and the mechanical properties of the repaired zones are analyzed. The results show that liquation cracks tend to be generated during laser additive repairing of K452 superalloys, which originate from the heat affected zone and extend to the repaired zone and the substrate along the grain boundaries. Under the action of tensile stress, the liquid films on the grain boundaries of the heat-affected zone become liquation cracks. The low-heat input pulsed laser process can effectively control the generation of liquation cracks. The average microhardness of the repaired zone of the pulsed laser repaired sample is 267.9 HV. The tensile strength and the yield strength are 814.3 MPa and 685.8 MPa, respectively, slightly larger than those of the as-cast substrate. The elongation is 4.87%, slightly smaller than 6.25% of the as-cast substrate. The low-heat input pulse laser process achieves crack-free slotting repair. The strength of the as-cast repair specimen reaches the strength standard of the as-cast substrate, and the elongation is slightly lower than that of the as-cast substrate.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/cjl201946.0402011

所属栏目:激光制造

收稿日期:2018-12-04

修改稿日期:2019-01-02

网络出版日期:2019-01-23

作者单位    点击查看

赖境:华中科技大学材料科学与工程学院, 湖北 武汉 430073
路媛媛:湖北工业大学工程技术学院, 湖北 武汉 430064
张航:华中科技大学材料科学与工程学院, 湖北 武汉 430073
陈浩:华中科技大学材料科学与工程学院, 湖北 武汉 430073
林守钢:华中科技大学材料科学与工程学院, 湖北 武汉 430073
刘德健:华中科技大学材料科学与工程学院, 湖北 武汉 430073

联系人作者:刘德健(djliu@hust.edu.cn)

【1】Qin X Z. Microstructure and property stability of cast Ni-base superalloys K452 and K446 during long-term thermal exposure[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2008.
秦学智. 铸造高温合金K452和K446在长期时效期间的组织和性能的演变[D]. 沈阳: 中国科学院金属研究所, 2008.

【2】Qin F. Research of scanning eddy current testing technology for the defects on aircraft turbine blades[D]. Beijing: Beijing Institute of Technology, 2016.
秦峰. 航空涡轮叶片缺陷的扫查式涡流检测技术研究[D]. 北京: 北京理工大学, 2016.

【3】Li X Q, Cheng Z,Qiu H, et al. Research progress in repair welding technology of Ni-based superalloy[J]. Materials Review, 2017, 31(S1): 541-545.
李小强, 程准, 邱昊, 等. 镍基高温合金焊接修复技术的研究进展[J]. 材料导报, 2017, 31(S1): 541-545.

【4】Xue L, Huang W D, Chen J, et al. Application of laser forming repair technology on the aerial castings[J]. Foundry Technology, 2008, 29(3): 391-394.
薛蕾, 黄卫东, 陈静, 等. 激光成形修复技术在航空铸件修复中的应用[J]. 铸造技术, 2008, 29(3): 391-394.

【5】Bian H Y, Zhai Q X, Li Y, et al. Microstructure and tensile properties of laser deposition repair GH738 superalloy[J]. Chinese Journal of Lasers, 2017, 44(10): 1002003.
卞宏友, 翟泉星, 李英, 等. 激光沉积修复GH738高温合金的组织与拉伸性能[J]. 中国激光, 2017, 44(10): 1002003.

【6】Luo D. Research on process and growth behavior in laser repairing of nickel-base single crystal superalloy[D]. Wuhan: Huazhong University of Science and Technology, 2016.
罗登. 镍基单晶高温合金激光修复工艺及生长行为研究[D]. 武汉: 华中科技大学, 2016.

【7】Luo D, Lu Y Y, Guo X X, et al. Laser repairing process of V-groove in single-crystal superalloy[J]. Chinese Journal of Lasers, 2016, 43(5): 0503001.
罗登, 路媛媛, 郭溪溪, 等. 单晶高温合金V槽的激光修复工艺研究[J]. 中国激光, 2016, 43(5): 0503001.

【8】Meng X, Tian X J, Cheng X, et al. Microstructure and heating treatment of DZ40M prepared by laser additive manufacturing[J]. Chinese Journal of Lasers, 2018, 45(10): 1002008.
孟翔, 田象军, 程序, 等. 激光增材制造DZ40M的微观组织及热处理研究[J]. 中国激光, 2018, 45(10): 1002008.

【9】Lü H, Yang Z B, Wang X, et al. Microstructures and tensile properties of GH4099 alloy fabricated by laser additive manufacturing after heat treatment[J]. Chinese Journal of Lasers, 2018, 45(10): 1002003.
吕豪, 杨志斌, 王鑫, 等. 激光增材制造GH4099合金热处理后的显微组织及拉伸性能[J]. 中国激光, 2018, 45(10): 1002003.

【10】Ojo O A, Chaturvedi M C. Liquation microfissuring in the weld heat-affected zone of an overaged precipitation-hardened nickel-base superalloy[J]. Metallurgical and Materials Transactions A, 2007, 38(2): 356-369.

【11】Qian B Y M, Lippold J C. The effect of multiple post-weld heat treatment cycles on the weldability of Waspaloy[J]. WELDING JOURNAL-NEW YORK-, 2002, 81(11): 233-238.

【12】Yang J J, Li F Z, Wang Z M, et al. Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication[J]. Journal of Materials Processing Technology, 2015, 225: 229-239.

【13】Ojo O A, Richards N L, Chaturvedi M C. Liquid film migration of constitutionally liquated γ′ in weld heat affected zone (HAZ) of Inconel 738LC superalloy[J]. Scripta Materialia, 2004, 51(2): 141-146.

【14】Osoba L O, Ojo O A. Influence of laser welding heat input on HAZ cracking in newly developed Haynes 282 superalloy[J]. Materials Science and Technology, 2012, 28(4): 431-436.

【15】Li Q G, Lin X, Wang X H, et al. Research on the cracking control of laser additive repaired K465 superalloy[J]. Rare Metal Materials and Engineering, 2017, 46(4): 955-960.
李秋歌, 林鑫, 王杏华, 等. 激光增材修复K465高温合金裂纹控制研究[J]. 稀有金属材料与工程, 2017, 46(4): 955-960.

【16】Liu D J, Lippold J C, Li J, et al. Laser engineered net shape (LENS) technology for the repair of Ni-base superalloy turbine components[J]. Metallurgical and Materials Transactions A, 2014, 45(10): 4454-4469.

【17】Ren W B, Dong S Y, Xu B S, et al. Temperature field of FeCrNiCu alloy forming layers of continuous wave/pulsed laser remanufacture[J]. Journal of Materials Engineering, 2017, 45(5): 1-6.
任维彬, 董世运, 徐滨士, 等. 连续/脉冲激光再制造FeCrNiCu合金成形层温度场研究[J]. 材料工程, 2017, 45(5): 1-6.

【18】Ojo O A, Richards N L, Chaturvedi M C. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy[J]. Scripta Materialia, 2004, 50(5): 641-646.

【19】Soucail M, Bienvenu Y. Dissolution of the γ′ phase in a nickel base superalloy at equilibrium and under rapid heating[J]. Materials Science and Engineering: A, 1996, 220(1/2): 215-222.

【20】Watanabe M, Horita Z, Sano T, et al. Electron microscopy study of Ni/Ni3Al diffusion-couple interface: II. Diffusivity measurement[J]. Acta Metallurgica et Materialia, 1994, 42(10): 3389-3396.

【21】Montazeri M, Ghaini F M. The liquation cracking behavior of IN738LC superalloy during low power Nd: YAG pulsed laser welding[J]. Materials Characterization, 2012, 67: 65-73.

【22】Kurz W, Fisher D J. Dendrite growth at the limit of stability: tip radius and spacing[J]. Acta Metallurgica, 1981, 29(1): 11-20.

【23】Zhao J F, Cheng C, Xie D Q, et al. High-temperature tensile property of GH4169 nickel-based superalloys by laser repair[J]. Chinese Journal of Lasers, 2016, 43(8): 0802012.
赵剑峰, 成诚, 谢得巧, 等. 激光修复GH4169镍基高温合金的高温拉伸性能[J]. 中国激光, 2016, 43(8): 0802012.

引用该论文

Lai Jing,Lu Yuanyuan,Zhang Hang,Chen Hao,Lin Shougang,Liu Dejian. Liquation Cracks in Superalloys Repaired by Low-Heat Input Pulsed Laser[J]. Chinese Journal of Lasers, 2019, 46(4): 0402011

赖境,路媛媛,张航,陈浩,林守钢,刘德健. 低热输入脉冲激光修复高温合金液化裂纹研究[J]. 中国激光, 2019, 46(4): 0402011

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF