首页 > 论文 > 红外与激光工程 > 48卷 > 2期(pp:221002--1)

高量子效率InP/In0.53Ga0.47As/InP红外光电阴极模拟

Simulation of InP/In0.53Ga0.47As/InP infrared photocathode with high quantum yield

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

将In0.53Ga0.47As吸收层设计为多个薄层, 通过不同浓度掺杂实现吸收层杂质指数分布, 建立了InP/In0.53Ga0.47As/InP红外光电阴极模型, 在皮秒级响应时间的前提下模拟了吸收层厚度、掺杂浓度和阴极外置偏压对阴极内量子效率的影响, 给出了光电子在吸收层和发射层的一维连续性方程和边界条件, 计算了光电子克服激活层势垒发射到真空中的几率, 进而获得阴极外量子效率随上述三个因素的变化规律, 结果表明, 吸收层掺杂浓度在1015~1018 cm-3范围内变化时, 内量子效率变化很小; 随着吸收层厚度在0.09~0.81 μm内增大, 内量子效率随之增大; 随着外置偏压升高, 内量子效率先增大后趋于平稳。文中给出一组既能获得高量子效率又能有快时间响应的阴极设计参数, 理论上1.55 μm入射光可以获得8.4%的外量子效率, 此时响应时间为49 ps。

Abstract

An InP/In0.53Ga0.47As/InP infrared photocathode model was established. The In0.53Ga0.47As absorber layer was designed as a multi-layer structure, the impurities of it were exponentially distributed by doping with different concentrations of the thin layers. The one-dimensional continuity equations and boundary conditions of the photoelectron in the absorber layer and the emissive layer were given and the probability that photoelectrons overcome the launch of the active layer barrier into the vacuum was calculated. The effects of absorber layer thickness, doping concentration and cathode bias voltage on the internal quantum efficiency of the cathode was simulated under the condition of picosecond response time, and then the law of the external quantum yield of the cathode was obtained with the above three factors. The results show that, when the doping concentration of the absorber layer changes within the range of 1015-1018 cm-3, The internal quantum efficiency change is very small; as the thickness of the absorber layer increases within 0.09-0.81 μm, the internal quantum efficiency increases. As the external bias voltage increases, the internal quantum efficiency increases first and then tends to be stable. A set of cathode design parameters that could achieve both high quantum efficiency and fast time response were presented. Theoretically, an external quantum yield of 8.4% can be obtained for 1.55 μm incident light, and the response time is 49 ps.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN215

DOI:10.3788/irla201948.0221002

所属栏目:先进光学材料

基金项目:国家自然科学基金(11475209)

收稿日期:2018-09-05

修改稿日期:2018-10-03

网络出版日期:--

作者单位    点击查看

周振辉:中国科学院西安光学精密机械研究所, 陕西 西安 710119中国科学院大学, 北京 100049中国科学院超快诊断重点实验室, 陕西 西安 710119
徐向晏:中国科学院西安光学精密机械研究所, 陕西 西安 710119中国科学院超快诊断重点实验室, 陕西 西安 710119
刘虎林:中国科学院西安光学精密机械研究所, 陕西 西安 710119中国科学院超快诊断重点实验室, 陕西 西安 710119
李 岩:西安石油大学 理学院, 陕西 西安 710065
卢 裕:中国科学院西安光学精密机械研究所, 陕西 西安 710119中国科学院超快诊断重点实验室, 陕西 西安 710119
钱 森:中国科学院高能物理研究所, 北京 100049核探测与核电子学国家重点实验室, 北京 100049
韦永林:中国科学院西安光学精密机械研究所, 陕西 西安 710119中国科学院超快诊断重点实验室, 陕西 西安 710119
何 凯:中国科学院西安光学精密机械研究所, 陕西 西安 710119中国科学院超快诊断重点实验室, 陕西 西安 710119
赛小锋:中国科学院西安光学精密机械研究所, 陕西 西安 710119中国科学院超快诊断重点实验室, 陕西 西安 710119
田进寿:中国科学院西安光学精密机械研究所, 陕西 西安 710119中国科学院超快诊断重点实验室, 陕西 西安 710119
陈 萍:中国科学院西安光学精密机械研究所, 陕西 西安 710119中国科学院超快诊断重点实验室, 陕西 西安 710119

联系人作者:周振辉(zhouzhenhui2015@opt.cn)

备注:周振辉(1992-), 男, 硕士生, 主要从事光电成像方面的研究。

【1】Yang M Z, Jin M C, Chang B K. Spectral response of InGaAs photocathodes with different emission layers [J]. Applied Optics, 2016, 55(31): 8732-8737.

【2】Jin M C, Chen X L, Hao G H, et al. Research on quantum efficiency for reflection-mode InGaAs photocathodes with thin emission layer [J]. Applied Optics, 2015, 54(28): 8332-8338.

【3】Matsuyama T, Mukai M, Horinaka H, et al. High luminescence polarization of InGaAs-AlGaAs strained layer superlattice fabricated as a photocathode of spin-polarized electron source [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2001, 40(11): 6468-6472.

【4】Yang M Z, Jin M C. Photoemission of reflection-mode InGaAs photocathodes after Cs,O activation and recaesiations [J]. Optical Materials, 2016, 62: 499-504.

【5】Smirnov K , Medzakovskiy V I, Davydov V V, et al. High sensitive InP emitter for InP/InGaAs heterostructures[J]. Journal of Physics: Conference Series, 2017, 917(6): 062019.

【6】Sachno V, Dolgyh A, Loctionov V. Image intensifier tube (I2) with 1.06-μm InGaAs-photocathode[C]//SPIE, 2005, 5834: 169-176.

【7】Escher J S, Gregory P E, Hyder S B, et al. Transferred-electron photoemission to 1.65 μm from InGaAs [J]. Journal of Applied Physics, 1978, 49(4): 2591-2592.

【8】Li Jinmin, Guo Lihui, Hou Xun. Theoretical calculation of quantum efficiency for field-assisted InP/InGaAsP semiconductor photocathodes [J]. Acta Physica Sinica, 1992, 41(10): 1672-1678. (in Chinese)

【9】Jin M C, Chang B K, Cheng H C, et al. Research on quantum efficiency of transmission-mode InGaAs photocathode [J]. Optik, 2014, 125(10): 2395-2399.

【10】Li Jinmin, Guo Lihui, Hou Xun. Calculation of time response for field-assisted InP/InGaAsP/InP semiconductor photocathodes [J]. Chinese Science Bulletin, 1992, 37(7): 598-601. (in Chinese)

【11】Sun Qiaoxia, Xu Xiangyan, An Yingbo, et al. Numerical study on time response characteristics of InP/InGaAs/InP infrared photocathode [J]. Infrared and Laser Engineering, 2013, 42(12): 3163-3167. (in Chinese)

【12】Zou Jijun, Chang Benkang, Yang Zhi. Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes [J]. Acta Physica Sinica, 2007, 56(5): 2992-2997.

【13】Escher J S, Gregory P E, Maloney T J. Hot-electron attenuation length in Ag/InP Schottky barriers[J]. Journal of Vacuum Science and Technology, 1979, 16(5): 1394-1397.

【14】Su C Y, Spicer W E, Lindau I. Photoelectron spectroscopic determination of the structure of (Cs,O) activated GaAs (110) surfaces [J]. Journal of Applied Physics, 1983, 54(3): 1413-1422.

【15】Levinshtein M, Rumyantsev S, Shur M. Handbook Series on Semiconductor Parameters[M]. 2nd ed. London: World Scientific, 1999: 62-88.

【16】Simon S M. Physics of Semiconductor Devices[M]. New York: Wiley, 1980.

【17】Levinshtein M, Rumyantsev S, Shur M. Handbook Series on Semiconductor Parameters[M]. 1st ed. London: World Scientific, 1999.

【18】Jiao Gangcheng, Xu Xiaobing, Zhang Liandong, et al. InGaAs/InP photocathode grown by solid-source MBE [C]//SPIE, 2013, 8912: 891216.

【19】Chinen Kouyu, Minoru Niigaki, Masahiro Miyao, et al. GaAs transmission photocathode grown by MBE[J]. Japanese Journal of Applied Physics, 1980, 19(11): 703-706.

【20】Narayanan A A, Fisher D G. Negative electron affinity gallium arsenide photocathode grown by MBE[J]. Appl Phys, 1984, 56(6): 1886-1887.

【21】Bourree L E, Chasse D R, Thamban P L, et al. MBE grown InGaAs photocathodes[C]//SPIE, 2003, 4796: 1-10.

【22】Jin M C, Chang B K, Guo J, et al. Theoretical study on electronic and optical properties of Zn-doped In0.25Ga0.75As photocathodes[J]. Optical Review, 2016, 23(1): 84-91.

【23】Guo Jing, Chang Benkang, Wang Honggang, et al. Near-infrared photocathode In0.53Ga0.47As doped with zinc: A first principle study[J]. Optik, 2016, 127(3): 1268-1271.

引用该论文

Zhou Zhenhui,Xu Xiangyan,Liu Hulin,Li Yan,Lu Yu,Qian Sen,Wei Yonglin,He Kai,Sai Xiaofeng,Tian Jinshou,Chen Ping. Simulation of InP/In0.53Ga0.47As/InP infrared photocathode with high quantum yield[J]. Infrared and Laser Engineering, 2019, 48(2): 0221002

周振辉,徐向晏,刘虎林,李 岩,卢 裕,钱 森,韦永林,何 凯,赛小锋,田进寿,陈 萍. 高量子效率InP/In0.53Ga0.47As/InP红外光电阴极模拟[J]. 红外与激光工程, 2019, 48(2): 0221002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF