首页 > 论文 > 量子电子学报 > 36卷 > 3期(pp:299-304)

可搬运30 cm光学腔

Transportable 30 cm optical cavity

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

超稳激光是将激光频率稳定在超稳定光学腔的谐振频率上产生的,为了研制可搬运光钟所需的超稳钟激光, 需要研制可搬运超稳定光学腔。通过光学腔的有限元分析,设计了一个振动敏感度低且结构稳健性好的可搬运光学腔,其腔长为30 cm, 是目前已知腔长最长的可搬运光学腔。光学腔沿三个正交方向的振动敏感度的测量结果分别为:沿光学腔腔轴方向(水平)为 1.4 × 10 -10 g -1 ; 垂直光学腔腔轴方向(水平)为1.5 × 10 -10 g -1 ; 垂直光学腔腔轴方向(竖直)为1.2 × 10 -10 g -1 。腔的振动敏感度略优于普通水平放置的光学腔,且腔具有更高的结构稳健性,可水平或者竖直安装。该光学腔设计可用于研制可搬运光钟。

Abstract

Ultra-stable lasers are generated by stabilizing their frequencies to the resonances of ultra-stable optical cavities. In order to develop ultra-stable clocks laser for transportable optical clocks, transportable ultra-stable optical cavities need to be developed. Based on the finite element analysis, the vibration-insensitive and structure-robust transportable optical cavity is designed, whose length is 30 cm and it is currently the longest among transportable optical cavities to our best knowledge. The vibration sensitivities of the cavity in three orthogonal directions are measured to be 1.4 × 10 -10 g -1 along the cavity axis (horizontal), 1.5 × 10 -10 g -1 cross the cavity (horizontal), and 1.2 × 10 -10 g -1 cross the cavity (vertical). Compared with normal horizontal-placed optical cavities, the cavity has slightly better vibration sensitivity, and is more robust to be mounted horizontally or vertically. The cavity can be used to develop a transportable optical clock.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN249;TN305.7

DOI:10.3969/j.issn.1007-5461.2019.03.007

所属栏目:激光技术与器件

基金项目:Supported by Major Research Plan of National Natural Science Foundation of China (国家自然科学基金重大研究计划, 91636110), Strategic Priority Research Program of Chinese Academy of Sciences (中国科学院战略性先导科技专项(), XDB21010300), National Key Research and Development Program of China (国家重点研发计划,2017YFA0304403)

收稿日期:2018-06-05

修改稿日期:2018-07-12

网络出版日期:--

作者单位    点击查看

陶斌凯:中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室, 湖北 武汉 430071中国科学院大学, 北京 100049
陈群峰:中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室, 湖北 武汉 430071

联系人作者:陶斌凯(taobinkai@qq.com)

备注:陶斌凯(1992-),湖北武汉人,研究生,主要从事超稳激光方面的研究。

【1】Salomon C, Hils D, Hall J L. Laser stabilization at the millihertz level [J]. Journal of the Optical Society of America B, 1998, 5(8): 1576-1587.

【2】Jiang Yanyi, Bi Zhiyi, Xu Xinye, et al. Two-hertz-linewidth Nd:YAG lasers at 1064 nm stabilized to vertically mounted ultra-stable cavities [J]. Chinese Physics B (中国物理B), 2008, 17(6): 2152-2155(in Chinese).

【3】Tai Zhao-Yang, Yan Lu-Lu, Zhang Yan-Yan, et al. Transportable 1555-nm ultra-stable laser with sub-0.185-Hz Linewidth [J]. Chinese Physics Letters (中国物理快报), 2017, 34(9): 90602(in Chinese).

【4】Haefner S, Falke S, Grebing C, et al. 8 × 10 -17 fractional laser frequency instability with a long room-temperature cavity [J]. Optics Letters, 2015, 40(9): 2112-2115.

【5】Matei D G, Legero T, Hafner S, et al. 1.5 μ m lasers with sub-10 mHz linewidth [J]. Physical Review Letters, 2017, 118(26): 263202.

【6】Bloom B J, Nicholson T L, Williams J R, et al. An optical lattice clock with accuracy and stability at the 10 -18 level [J]. Nature, 2014, 50(7486): 71-75.

【7】Ludlow A D, Boyd M M, Ye J, et al. Optical atomic clocks [J]. Reviews of Modern Physics, 2015, 87(2): 637-701.

【8】Huntemann N, Sanner C, Lipphardt B, et al. Single-ion atomic clock with 3 × 10 -18 systematic uncertainty [J]. Physical Review Letters, 2016, 11(6): 063001.

【9】Huang Y, Guan H, Liu P, et al. Frequency comparison of two 40 Ca + optical clocks with an uncertainty at the 10 -17 level [J]. Physical Review Letters, 2016, 11(1): 013001.

【10】Hutson R, Campbell S, Marti E, et al. A Fermi-degenerate three-dimensional optical lattice clock [J]. Science, 2017, 358(6359): 90-94.

【11】Eisele C, Nevsky A Y, Schiller S. Laboratory test of the isotropy of light propagation at the 10 -17 level [J]. Physical Review Letters, 2009, 103(9): 090401.

【12】Chen Q, Magoulakis E, Schiller S. High-sensitivity crossed-resonator laser apparatus for improved tests of Lorentz invariance and of space-time fluctuations [J]. Physical Review D, 2016, 93(2): 022003.

【13】Hees A, Guena J, Abgrall M, et al. Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons [J]. Physical Review Letters, 2016, 117(6): 061301.

【14】Roberts B M, Blewitt G, Dailey C, et al. Search for domain wall dark matter with atomic clocks on board global positioning system satellites [J]. Nature Communications, 2017, 8(1): 1195.

【15】Adhikari R X. Gravitational radiation detection with laser interferometry [J]. Reviews of Modern Physics, 2014, 8(1): 121-151.

【16】Abbott B P, et al. Observation of gravitational waves from a binary black hole merger [J]. Physical Review Letters, 2016, 11(6): 061102.

【17】Koller S B, Grotti J, Vogt S, et al. Transportable optical lattice clock with 7 × 10 -17 uncertainty [J]. Physical Review Letters, 2017, 118(7): 073601.

【18】Cao J, Zhang P, Shang J, et al. A compact, transportable single-ion optical clock with 7.8 × 10 -17 systematic uncertainty [J]. Applied Physics B, 2017, 123(4): 112.

【19】Chen L, Hall J L, Ye J, et al. Vibration-induced elastic deformation of Fabry-Perot cavities [J]. Physical Review A, 2006, 30(5): 053801.

【20】Millo J, et al. Ultrastable lasers based on vibration insensitive cavities [J]. Physical Review A, 2009, 79(5): 053829.

【21】Webster S, Gill P. Force-insensitive optical cavity [J]. Optics Letters, 2011, 3(18): 1539-4794.

【22】Leibrandt D R, Thorpe M J, Notcutt M, et al. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments [J]. Optics Express, 2011, 19(4): 1094-4087.

【23】Chen Q F, Nevsky A, Cardace M, et al. A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1 × 10 -15 [J]. Review of Scientific Instruments, 2014, 85(11): 113107.

【24】Kessler T, Legero T, Sterr U. Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors [J]. Journal of the Optical Society of America B, 2010, 27(5): 914-919.

【25】Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities [J]. Physical Review Letters, 2004, 93(25): 250602.

引用该论文

TAOBinkai,CHEN Qunfeng. Transportable 30 cm optical cavity[J]. Chinese Journal of Quantum Electronics, 2019, 36(3): 299-304

陶斌凯,陈群峰. 可搬运30 cm光学腔[J]. 量子电子学报, 2019, 36(3): 299-304

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF