首页 > 论文 > 激光与光电子学进展 > 56卷 > 13期(pp:131501--1)

基于投影分布熵的地面激光点云自动配准方法

Registration of Terrestrial Laser Scanning Data Based on Projection Distribution Entropy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

点云配准是地面三维激光扫描数据处理的重要环节。面向地形起伏较小的场景,提出了一种基于投影分布熵的地面激光点云自动配准方法,利用信息熵对点云投影分布的集中程度进行描述,并寻找点云间的最佳分布进行粗配准,以此作为迭代最邻近点算法的初始值进行精配准。相对于基于特征的自动配准方法,该方法主要关注点云整体分布的一致性。实验表明,该方法具有较高的稳定性和成功率,尤其在点云场景出现较大视角变化或包含较多重复、对称结构时具有良好的配准结果。

Abstract

Point cloud registration is an important step in the processing of terrestrial three-dimensional laser scanning data. Aiming at the scene with small terrain fluctuation, we propose an automatic point cloud registration method based on projection distribution entropy. Initially, information entropy is used to describe the intensity of point cloud projection distribution. Following this, a coarse registration is achieved by seeking an optimal point cloud distribution between two point clouds. Consequently, the transformation parameters are determined between the two point clouds with different distributions and supplied as an input to the iterative closest point algorithm to achieve a fine registration. Compared with the automatic point cloud registration method based on features, the proposed method's main concern is the consistency of the overall distributions of the clouds. Results show that the proposed method shows a robust and accurate registration outcome, especially for the point cloud scene with great change of perspective and multiple repetitive symmetrical structures.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.131501

所属栏目:机器视觉

基金项目:国家自然科学基金、国家重点研发计划、重庆市科委技术创新与应用示范项目重大主题专项、重庆市社会事业与民生保障科技创新专项;

收稿日期:2019-01-14

修改稿日期:2019-01-28

网络出版日期:2019-07-01

作者单位    点击查看

梁建国:重庆市勘测院, 重庆 401121重庆市地理国情监测工程技术研究中心, 重庆 401121
陈茂霖:重庆交通大学土木工程学院, 重庆 400074
马红:重庆市勘测院, 重庆 401121重庆市地理国情监测工程技术研究中心, 重庆 401121

联系人作者:马红(mah@cqkcy.com)

备注:国家自然科学基金、国家重点研发计划、重庆市科委技术创新与应用示范项目重大主题专项、重庆市社会事业与民生保障科技创新专项;

【1】Pu S and Vosselman G. Knowledge based reconstruction of building models from terrestrial laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing. 64(6), 575-584(2009).

【2】Fang W, Huang X F and Zhang F. Mural image rectification based on correction of laser point cloud intensity. Acta Geodaetica et Cartographica Sinica. 44(5), 541-547(2015).
方伟, 黄先锋, 张帆 等. 依据点云强度校正的壁画纠正. 测绘学报. 44(5), 541-547(2015).

【3】Li C, Lu X P, Zhu N N et al. Continuously extracting section and deformation analysis for subway tunnel based on LiDAR points. Acta Geodaetica et Cartographica Sinica. 44(9), 1056-1062(2015).
李珵, 卢小平, 朱宁宁 等. 基于激光点云的隧道断面连续提取与形变分析方法. 测绘学报. 44(9), 1056-1062(2015).

【4】Bu G C and Wang P. Adaptive estimation method for diameter at breast height based on terrestrial laser scanning. Laser & Optoelectronics Progress. 53(8), (2016).
步国超, 汪沛. 基于单站地面激光雷达数据的自适应胸径估计方法. 激光与光电子学进展. 53(8), (2016).

【5】Besl P J. McKay N D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence. 14(2), 239-256(1992).

【6】Chen Y and Medioni G. Object modelling by registration of multiple range images. Image and Vision Computing. 10(3), 145-155(1992).

【7】TR04-004[2019-01-01]. http:∥citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1. 298, (2004).

【8】Zhang Z Y. Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision. 13(2), 119-152(1994).

【9】Barnea S and Filin S. Keypoint based autonomous registration of terrestrial laser point-clouds. ISPRS Journal of Photogrammetry and Remote Sensing. 63(1), 19-35(2008).

【10】Li J, Wang Z M, Ma Y R et al. Automatic and accurate mosaicking of point clouds from multi-station laser scanning. Geomatics and Information Science of Wuhan University. 39(9), 1114-1120(2014).
李健, 王宗敏, 马玉荣 等. 多站激光点云数据全自动高精度拼接方法研究. 武汉大学学报(信息科学版). 39(9), 1114-1120(2014).

【11】Bendels G H, Degener P, Wahl R et al. Image-based registration of 3D-range data using feature surface elements. [C]//Proceedings of the 5th International Conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage, December 7-10, 2004, Oudenaarde, Belgium. Switzerland: Eurographics Association Aire-la-Ville. 115-124(2004).

【12】Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision. 60(2), 91-110(2004).

【13】Theiler P W, Wegner J D and Schindler K. Keypoint-based 4-points congruent sets-automated marker-less registration of laser scans. ISPRS Journal of Photogrammetry and Remote Sensing. 96, 149-163(2014).

【14】Rusu R B, Blodow N and Beetz M. Fast point feature histograms (FPFH) for 3D registration. [C]//2009 IEEE International Conference on Robotics and Automation, May 12-17, 2009, Kobe, Japan. New York: IEEE. 3212-3217(2009).

【15】Chen M L, Lu W X, Wan Y C et al. Automatic registration of terrestrial point clouds without additional information. Chinese Journal of Lasers. 43(4), (2016).
陈茂霖, 卢维欣, 万幼川 等. 无附加信息的地面激光点云自动拼接方法. 中国激光. 43(4), (2016).

【16】Lu J and Peng Z T. Iterative interpolation point cloud registration algorithm based on fast point feature histograms. Journal of National University of Defense Technology. 36(6), 12-17(2014).
陆军, 彭仲涛. 基于快速点特征直方图的特征点云迭代插值配准算法. 国防科技大学学报. 36(6), 12-17(2014).

【17】Pu S, Li J W and Guo S Q. Registration of terrestrial laser point clouds by fusing semantic features and GPS positions. Acta Geodaetica et Cartographica Sinica. 43(5), 545-550(2014).
浦石, 李京伟, 郭四清. 融合语义特征与GPS位置的地面激光点云拼接方法. 测绘学报. 43(5), 545-550(2014).

【18】Yang B S, Dong Z, Liang F X et al. Automatic registration of large-scale urban scene point clouds based on semantic feature points. ISPRS Journal of Photogrammetry and Remote Sensing. 113, 43-58(2016).

【19】Tan Z G, Lu M, Guo Y L et al. Multi-view point cloud scenes mosaic based on projective distribution entropy. Chinese Journal of Lasers. 39(11), (2012).
谭志国, 鲁敏, 郭裕兰 等. 基于投影分布熵的多视点三维点云场景拼接方法. 中国激光. 39(11), (2012).

【20】Shannon C E. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review. 5(1), 3-55(2001).

【21】Brenner C, Dold C and Ripperda N. Coarse orientation of terrestrial laser scans in urban environments. ISPRS Journal of Photogrammetry and Remote Sensing. 63(1), 4-18(2008).

【22】Polewski P, Erickson A, Yao W, Remote Sensing, Spatial Information Sciences et al. III-. 3, 347-354(2016).

【23】Fischler M A and Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM. 24(6), 381-395(1981).

引用该论文

Jianguo Liang, Maolin Chen, Hong Ma. Registration of Terrestrial Laser Scanning Data Based on Projection Distribution Entropy[J]. Laser & Optoelectronics Progress, 2019, 56(13): 131501

梁建国, 陈茂霖, 马红. 基于投影分布熵的地面激光点云自动配准方法[J]. 激光与光电子学进展, 2019, 56(13): 131501

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF