首页 > 论文 > 光学学报 > 40卷 > 2期(pp:0201003--1)

基于地基高分辨率太阳吸收光谱观测大气中硝酸的时空分布 (封面文章)

Detection of Temporal and Spatial Distributions of Atmospheric Nitric Acid Based on Ground-Based High-Resolution Solar Absorption Spectra (Cover Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用高分辨率傅里叶变换红外光谱(FTIR)技术探测合肥地区大气硝酸(HNO3)的浓度,基于最优估算法由中红外太阳吸收光谱反演出HNO3的垂直廓线和柱总量。获得了2017年大气HNO3的垂直廓线和柱总量的时间序列,分析了HNO3的季节变化、浓度探测敏感性高度、反演平均核和自由度等特征。不同季节大气HNO3的垂直廓线表明,HNO3在20~30 km的大气平流层浓度较高,在对流层浓度较低。HNO3的柱浓度显示出明显的季节变化,春季出现最大值,冬季出现最小值,季节变化幅值为9.82×10 15 molecule/cm 2。为了对地基FTIR的观测进行比对,选取Aura MLS卫星数据产品与地基测量数据进行比对。比对结果表明,地基遥感观测与卫星数据显示出的季节变化一致;尽管卫星偏柱量整体小于地基遥感的柱总量,但两者的相关系数为0.83,表明两者具有较好的一致性。地基观测结果验证了地基FTIR技术观测大气中HNO3时空分布的可靠性和准确性。

Abstract

In this study, the high-resolution Fourier transform infrared spectroscopy (FTIR) is used to detect the concentrations of nitric acid (HNO3) in the atmosphere above the Hefei site. The vertical profiles and total columns of HNO3 are retrieved from the mid-infrared solar absorption spectra using the optimal estimation method. The vertical profiles and time series of the total columns of atmospheric HNO3 are obtained over the entire year of 2017. Further, the characteristics of the seasonal variation of HNO3, sensitivity altitude of concentration detection, averaging kernels of retrieved profiles, and degrees of freedom are analyzed. The vertical profiles of atmospheric HNO3 in different seasons denote that the HNO3 concentrations are higher at an altitude of 20--30 km in the stratosphere and that they are lower in the troposphere. Furthermore, the total columns of HNO3 exhibit obvious seasonal variations, with a maximum in spring and minimum in winter. The amplitude of the seasonal variations is 9.82×10 15 molecule/cm 2. The data products obtained from the Aura MLS satellite are selected for performing comparison with the ground-based data to validate the measurements of the ground-based FTIR using independent data. The comparison results denote that the ground-based remote sensing and satellite observations display a consistent seasonal HNO3 variability. The ground-based data exhibits a good agreement with the satellite data with a high correlation coefficient of 0.83 even though the partial columns of the satellite data are lower than the corresponding ground-based total columns. The observation results indicate the reliability and accuracy of the ground-based FTIR for observing the temporal and spatial distributions of the atmospheric HNO3.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433

DOI:10.3788/AOS202040.0201003

所属栏目:大气光学与海洋光学

基金项目:国家自然科学基金、国家重点研发计划、广东省自然科学基金、国家高分辨率对地观测重大科技专项;

收稿日期:2019-08-12

修改稿日期:2019-09-19

网络出版日期:2020-02-01

作者单位    点击查看

章惠芳:安徽大学物质科学与信息技术研究院, 安徽 合肥 230601中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
王薇:中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
刘诚:中国科学技术大学地球和空间科学学院, 安徽 合肥 230026
单昌功:中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
胡启后:中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
孙友文:中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
NicholasJones

联系人作者:王薇(wwang@aiofm.ac.cn); 刘诚();

备注:国家自然科学基金、国家重点研发计划、广东省自然科学基金、国家高分辨率对地观测重大科技专项;

【1】Batchelor R L, Strong K, Lindenmaier R, et al. A new Bruker IFS 125HR FTIR spectrometer for the Polar Environment Atmospheric Research Laboratory at Eureka, Nunavut, Canada: measurements and comparison with the existing Bomem DA8 spectrometer [J]. Journal of Atmospheric and Oceanic Technology. 2009, 26(7): 1328-1340.

【2】Brasseur G P, Solomon S. Aeronomy of the middle atmosphere: chemistry and physics of the stratosphere and mesosphere [M]. Dordrecht: Springer. 2005, 327-358.

【3】Solomon S. Stratospheric ozone depletion: a review of concepts and history [J]. Reviews of Geophysics. 1999, 37(3): 275-316.

【4】Schaap M, van Loon M, ten Brink H M, et al. Secondary inorganic aerosol simulations for Europe with special attention to nitrate [J]. Atmospheric Chemistry and Physics. 2004, 4(3): 857-874.

【5】Kou X W, Zhou B, Liu X C, et al. Measurement of trace NH3 concentration in atmosphere by cavity ring-down spectroscopy [J]. Acta Optica Sinica. 2018, 38(11): 1130001.
寇潇文, 周宾, 刘训臣, 等. 腔衰荡光谱方法测量大气中痕量NH3的浓度 [J]. 光学学报. 2018, 38(11): 1130001.

【6】Arden Pope III C, Ezzati M, Dockery D W. Fine particulate air pollution and life expectancies in the United States: the role of influential observations [J]. Journal of the Air & Waste Management Association. 2013, 63(2): 129-132.

【7】Murcray D G, Kyle T G, Murcray F H, et al. Nitric acid and nitric oxide in the lower stratosphere [J]. Nature. 1968, 218(5136): 78-79.

【8】Lado-Bordowsky O, Amat G. Laboratory and atmospheric measurements of HNO3 to determine the amount of this constituent in the Earth’s atmosphere [J]. Applied Optics. 1979, 18(20): 3400-3403.

【9】Loewenstein M, Starr W L, Murcray D G. Stratospheric NO and HNO3 observations in the northern hemisphere for three seasons [J]. Geophysical Research Letters. 1978, 5(6): 531-534.

【10】Louisnard N, Fergant G, Girard A, et al. Infrared absorption spectroscopy applied to stratospheric profiles of minor constituents [J]. Journal of Geophysical Research: Oceans. 1983, 88(C9): 5365-5376.

【11】Rinsland C P, Goldman A, Murcray F J, et al. Infrared measurements of atmospheric gases above Mauna Loa, Hawaii, in February 1987 [J]. Journal of Geophysical Research. 1988, 93(D10): 12607-12626.

【12】Russell III J M, Farmer C B, Rinsland C P, et al. Measurements of odd nitrogen compounds in the stratosphere by the ATMOS experiment on Spacelab 3 [J]. Journal of Geophysical Research. 1988, 93(D2): 1718-1736.

【13】Neuman J A, Gao R S, Fahey D W, et al. In situ measurements of HNO3, NOy, NO, and O3 in the lower stratosphere and upper troposphere [J]. Atmospheric Environment. 2001, 35(33): 5789-5797.

【14】Wespes C, Emmons L, Edwards D P, et al. Analysis of ozone and nitric acid in spring and summer Arctic pollution using aircraft, ground-based, satellite observations and MOZART-4 model: source attribution and partitioning [J]. Atmospheric Chemistry and Physics. 2012, 12(1): 237-259.

【15】Johansson S, Woiwode W, H?pfner M, et al. Airborne limb-imaging measurements of temperature, HNO3, O3, ClONO2, H2O and CFC-12 during the Arctic winter 2015/2016: characterization, in situ validation and comparison to Aura/MLS [J]. Atmospheric Measurement Techniques. 2018, 11(8): 4737-4756.

【16】Wespes C, Hurtmans D, Clerbaux C, et al. Global distributions of nitric acid from IASI/MetOP measurements [J]. Atmospheric Chemistry and Physics. 2009, 9(20): 7949-7962.

【17】Ronsmans G, Langerock B, Wespes C, et al. First characterization and validation of FORLI-HNO3 vertical profiles retrieved from IASI/Metop [J]. Atmospheric Measurement Techniques. 2016, 9(9): 4783-4801.

【18】Griffin D, Walker K A, Conway S, et al. Multi-year comparisons of ground-based and space-borne Fourier transform spectrometers in the high Arctic between 2006 and 2013 [J]. Atmospheric Measurement Techniques. 2017, 10(9): 3273-3294.

【19】Fiorucci I, Muscari G, Froidevaux L, et al. Ground-based stratospheric O3 and HNO3 measurements at thule, Greenland: an intercomparison with aura MLS observations [J]. Atmospheric Measurement Techniques. 2013, 6(9): 2441-2453.

【20】Rinsland C P, Zander R, Demoulin P. Ground-based infrared measurements of HNO3 total column abundances: long-term trend and variability [J]. Journal of Geophysical Research. 1991, 96(D5): 9379-9389.

【21】Wood S W, Batchelor R L, Goldman A, et al. Ground-based nitric acid measurements at Arrival Heights, Antarctica, using solar and lunar Fourier transform infrared observations [J]. Journal of Geophysical Research. 2004, 109(D18): D18307.

【22】Vigouroux C, de Mazière M, Errera Q, et al. Comparisons between ground-based FTIR and MIPAS N2O and HNO3 profiles before and after assimilation in BASCOE [J]. Atmospheric Chemistry and Physics. 2007, 7(2): 377-396.

【23】Fu D, Walker K A, Mittermeier R L, et al. Simultaneous trace gas measurements using two Fourier transform spectrometers at Eureka, Canada during spring 2006, and comparisons with the ACE-FTS [J]. Atmospheric Chemistry and Physics. 2011, 11(11): 5383-5405.

【24】Shan C G, Wang W, Liu C, et al. Detection of stable isotopic ratio of atmospheric CO2 based on Fourier transform infrared spectroscopy [J]. Acta Physica Sinica. 2017, 66(22): 220204.
单昌功, 王薇, 刘诚, 等. 基于傅里叶变换红外光谱技术测量大气中CO2的稳定同位素比值 [J]. 物理学报. 2017, 66(22): 220204.

【25】Wang W, Tian Y, Liu C, et al. Investigating the performance of a greenhouse gas observatory in Hefei, China [J]. Atmospheric Measurement Techniques. 2017, 10(7): 2627-2643.

【26】Rodgers C D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation [J]. Reviews of Geophysics. 1976, 14(4): 609-624.

【27】Rodgers C D. Inverse methods for atmospheric sounding-theory and practice[M]. Series on atmospheric: , 2000, 2: 103-121.

【28】Rothman L S, Gordon I E, Barbe A, et al. The HITRAN 2008 molecular spectroscopic database [J]. Journal of Quantitative Spectroscopy and Radiative Transfer. 2009, 110(9/10): 533-572.

【29】Hase F, Blumenstock T, Paton-Walsh C. Analysis of the instrumental line shape of high-resolution Fourier transform IR spectrometers with gas cell measurements and new retrieval software [J]. Applied Optics. 1999, 38(15): 3417-3422.

【30】Hase F. Improved instrumental line shape monitoring for the ground-based, high-resolution FTIR spectrometers of the Network for the Detection of Atmospheric Composition Change [J]. Atmospheric Measurement Techniques. 2012, 5(3): 603-610.

【31】Keppel-Aleks G, Wennberg P O, Schneider T. Sources of variations in total column carbon dioxide [J]. Atmospheric Chemistry and Physics. 2011, 11(8): 3581-3593.

【32】Livesey N J, van Snyder W, Read W G, et al. Retrieval algorithms for the EOS Microwave Limb Sounder (MLS) [J]. IEEE Transactions on Geoscience and Remote Sensing. 2006, 44(5): 1144-1155.

【33】Livesey N J, Read W G, Wagner P A, et al. Version 4.2× Level 2 data quality and description document, Rev. B [J]. Jet Propulsion Laboratory. 2015.

【34】Rohrer F, Berresheim H. Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation [J]. Nature. 2006, 442(7099): 184-187.

【35】Chen L, Wang S G, Wang L L. Variation characteristics and influencing factors of NOx and ozone in autumn in Fukang region of Xinjiang [J]. Journal of Arid Meteorology. 2012, 30(3): 345-352.
陈林, 王式功, 王莉莉. 新疆阜康地区秋季大气NOX和O3变化特征及影响要素 [J]. 干旱气象. 2012, 30(3): 345-352.

【36】Sun Y W, Wang L Y. Gaseous pollutants levels and sources of NOx, SO2 in heating period of spring and non-heating period of summer in Siping city [J]. Liaoning Chemical Industry. 2014, 43(1): 19-21, 24.
孙玉伟, 王璐瑶. 四平市春季供暖期与夏季非供暖期大气NOx、SO2污染特征和来源 [J]. 辽宁化工. 2014, 43(1): 19-21, 24.

【37】Austin J, Garcia R R. Russell III J M, et al. On the atmospheric photochemistry of nitric acid [J]. Journal of Geophysical Research. 1986, 91(D5): 5477-5485.

引用该论文

Zhang Huifang,Wang Wei,Liu Cheng,Shan Changgong,Hu Qihou,Sun Youwen,Nicholas Jones. Detection of Temporal and Spatial Distributions of Atmospheric Nitric Acid Based on Ground-Based High-Resolution Solar Absorption Spectra[J]. Acta Optica Sinica, 2020, 40(2): 0201003

章惠芳,王薇,刘诚,单昌功,胡启后,孙友文,NicholasJones. 基于地基高分辨率太阳吸收光谱观测大气中硝酸的时空分布[J]. 光学学报, 2020, 40(2): 0201003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF