首页 > 论文 > 中国激光 > 46卷 > 12期(pp:1207001--1)

高斯谢尔模型光束在生物组织中的光谱变化

Changes in Spectra of Gaussian Schell-Model Beams Propagating in Biological Tissues

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

以广义惠更斯-菲涅耳原理为基础,推导高斯谢尔模型光束在生物组织中的光谱解析表达式,并利用归一化光谱和相对光谱移动,研究高斯谢尔模型光束在生物组织中传输时的光谱变化。结果表明:高斯谢尔模型光束在生物组织中传输时会出现光谱蓝移、红移及跃变,且与离轴距离、传输距离、生物组织类型(不同的折射率结构常数)及空间相关长度有关;随着传输距离增大,折射率结构常数增大,即生物组织湍流越强,空间相关长度越大,光谱跃变位置越远,跃变量越小,即光谱跃变现象越弱,光谱红移转变为蓝移的传输位置越远;折射率结构常数和空间相关长度越大,光谱跃变对应的离轴距离越大,即跃变的观察点到传输轴的距离越大。

Abstract

In this study, an analytical expression is derived based on the extended Huygens-Fresnel principle for the spectrum of a Gaussian Schell-model (GSM) beam that propagates in biological tissues. The spectral change of the GSM beam during propagation is studied based on the normalized spectrum and the relative spectral shift. Results show that the spectral blue shift, red shift, and rapid transition can be observed when the GSM beam propagates in biological tissues, and they are dependent on the off-axis distance, propagation distance, type of biological tissue specimen (specifically the refractive-index structure constant of tissue turbulence), and spatial correlation length. As the propagation distance increases, the refractive-index structure constant increases, meaning that the turbulence of biological tissue becomes stronger. Meanwhile, as the spatial correlation length increases, the position where spectral rapid transition occurs is farther and the transition qualities correspondingly decrease; furthermore, the spectral rapid transition becomes increasingly weak and the propagation position where a transition can be observed from the spectral red shift to blue shift becomes increasingly distant. With increasing values of the refractive-index structure constant and the spatial correlation length, the off-axis distance associated with the spectral rapid transition will also increase, i.e., the distance between the observation position and the propagation axis will increase.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/CJL201946.1207001

所属栏目:生物医学光子学与激光医学

基金项目:山西省应用基础研究计划、山西省优秀青年基金、山西省“1331工程”重点创新团队建设计划;

收稿日期:2019-07-01

修改稿日期:2019-08-19

网络出版日期:2019-12-01

作者单位    点击查看

田燕男:中北大学理学院, 山西 太原 030051
段美玲:中北大学理学院, 山西 太原 030051
吴云光:吕梁学院物理系, 山西 吕梁 033001
张永梅:中北大学理学院, 山西 太原 030051

联系人作者:段美玲(meilingduan@nuc.edu.cn)

备注:山西省应用基础研究计划、山西省优秀青年基金、山西省“1331工程”重点创新团队建设计划;

【1】Xu K X, Gao F, Zhao H J. Biomedical photonics[M]. Beijing: Science Press, 2011, 1-8.
徐可欣, 高峰, 赵会娟. 生物医学光子学[M]. 北京: 科学出版社, 2011, 1-8.

【2】Zhang Z X. Biomedical photonics: diagnosis, therapy and monitoring[M]. Xi''''an: Xi''''an Jiaotong University Press, 2017, 3-23.
张镇西. 生物医学光子学诊断、治疗与监测[M]. 西安: 西安交通大学出版社, 2017, 3-23.

【3】Chen X, Lu J L, Li P C. Viscoelasticity measurement of biological tissues using laser speckle techniques: a review [J]. Chinese Journal of Lasers. 2018, 45(2): 0207005.
陈肖, 陆锦玲, 李鹏程. 生物组织黏弹性激光散斑检测方法研究进展 [J]. 中国激光. 2018, 45(2): 0207005.

【4】Liu L X, Li M Z, Zhao Z G, et al. Recent advances of hyperspectral imaging application in biomedicine [J]. Chinese Journal of Lasers. 2018, 45(2): 0207017.
刘立新, 李梦珠, 赵志刚, 等. 高光谱成像技术在生物医学中的应用进展 [J]. 中国激光. 2018, 45(2): 0207017.

【5】Li X H, Yang S B, Fan R W, et al. Discrimination of soft tissues using laser-induced breakdown spectroscopy in combination with k nearest neighbors (kNN) and support vector machine (SVM) classifiers [J]. Optics & Laser Technology. 2018, 102: 233-239.

【6】Schmitt J M, Kumar G. Turbulent nature of refractive-index variations in biological tissue [J]. Optics Letters. 1996, 21(16): 1310-1312.

【7】Gao W R. Changes of polarization of light beams on propagation through tissue [J]. Optics Communications. 2006, 260(2): 749-754.

【8】Gao W R, Korotkova O. Changes in the state of polarization of a random electromagnetic beam propagating through tissue [J]. Optics Communications. 2007, 270(2): 474-478.

【9】Gao W R. Determination of spatial correlation functions of refractive index of living tissue [J]. Journal of Microscopy. 2012, 245(1): 43-48.

【10】Gao W R. Effect of tissue structure on resolution of imaging systems [J]. Journal of Modern Optics. 2013, 60(15): 1290-1296.

【11】Gao W R. Change of coherence of light produced by tissue turbulence [J]. Journal of Quantitative Spectroscopy and Radiative Transfer. 2013, 131: 52-58.

【12】Jacques S L. Optical properties of biological tissues: a review [J]. Physics in Medicine and Biology. 2013, 58(11): R37-R61.

【13】Tong Z S, Korotkova O. Polarization of random beams scattered from two-dimensional bio-tissue slices [J]. Optics Communications. 2014, 322: 202-204.

【14】Wu Y Q, Zhang Y X, Wang Q, et al. Average intensity and spreading of partially coherent model beams propagating in a turbulent biological tissue [J]. Journal of Quantitative Spectroscopy and Radiative Transfer. 2016, 184: 308-315.

【15】Jin H, Zheng W, Ma H T, et al. Average intensity and scintillation of light in a turbulent biological tissue [J]. Optik. 2016, 127(20): 9813-9820.

【16】Chen X, Korotkova O. Optical beam propagation in soft anisotropic biological tissues [J]. OSA Continuum. 2018, 1(3): 1055-1067.

【17】Wolf E. Invariance of the spectrum of light on propagation [J]. Physical Review Letters. 1986, 56(13): 1370-1372.

【18】Pu J X, Zhang H H, Nemoto S. Spectral shifts and spectral switches of partially coherent light passing through an aperture [J]. Optics Communications. 1999, 162(1/2/3): 57-63.

【19】Ji X L, Zhang E T, Lü B D. Changes in the spectrum of Gaussian Schell-model beams propagating through turbulent atmosphere [J]. Optics Communications. 2006, 259(1): 1-6.

【20】Tong Z, Korotkova O. Far-field analysis of spectral shifts in Gaussian Schell-model beams propagating through media with arbitrary refractive properties [J]. Journal of Optics. 2010, 12(9): 095708.

【21】Zhu S J, Li Z H. Theoretical and experimental studies of the spectral changes of a focused polychromatic partially coherent flat-topped beam [J]. Applied Physics B. 2015, 118(3): 481-487.

【22】Zhou F, Zhu S J, Cai Y J. Spectral shift of an electromagnetic Gaussian Schell-model beam propagating through tissue [J]. Journal of Modern Optics. 2011, 58(1): 38-44.

【23】Peng Y Y, Li J H, Wei J L, et al. Influence of non-Kolmogorov atmospheric turbulence on the spectral changes of Gaussian-Schell model beams [J]. Laser & Optoelectronics Progress. 2014, 51(1): 010102.
彭艳艳, 李晋红, 魏计林, 等. 非Kolmogorov大气湍流对高斯谢尔模型光束光谱变化的影响 [J]. 激光与光电子学进展. 2014, 51(1): 010102.

【24】Peng Y Y. Study on spectral changes of laser in atmospheric transmission [D]. Taiyuan: Taiyuan University of Science and Technology. 2014, 15-24.
彭艳艳. 激光大气传输中光谱变化的研究 [D]. 太原: 太原科技大学. 2014, 15-24.

【25】Andrews L C, Phillips R L. Laser beam propagation through random media [M]. 2nd ed. Bellingham: SPIE. 2005, 135-177.

【26】Wang S C H, Plonus M A. Optical beam propagation for a partially coherent source in the turbulent atmosphere [J]. Journal of the Optical Society of America. 1979, 69(9): 1297-1304.

【27】Gradshteyn I S, Ryzhik I M. Table of integrals, series and products[M]. New York: , 2014, 365.

【28】Roychowdhury H, Wolf E. Invariance of spectrum of light generated by a class of quasi-homogenous sources on propagation through turbulence [J]. Optics Communications. 2004, 241(1/2/3): 11-15.

引用该论文

Tian Yannan,Duan Meiling,Wu Yunguang,Zhang Yongmei. Changes in Spectra of Gaussian Schell-Model Beams Propagating in Biological Tissues[J]. Chinese Journal of Lasers, 2019, 46(12): 1207001

田燕男,段美玲,吴云光,张永梅. 高斯谢尔模型光束在生物组织中的光谱变化[J]. 中国激光, 2019, 46(12): 1207001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF