首页 > 论文 > 光学学报 > 39卷 > 7期(pp:0712008--1)

基于增强型CCD光场高阶相干度的测量 (封面文章)

Measurement of High-Order Coherence of Light Field Based on Intensified Charge-Coupled Device (Cover Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光场的高阶关联特性是揭示光的统计行为的重要特征。采用传统的HBT(Hanbury-Brown and Twiss)实验模型测量多光子高阶关联时,会受到单光子探测器和分束器数量的限制,测量起来比较复杂。提出了一种利用增强型电荷耦合器件(ICCD)快速测量光场高阶关联的方法。通过改变曝光时间和光照强度(计数率)对赝热光场和相干光场的高阶相干度进行测量和分析。结果表明:在适当的条件下,可以确定光场的高阶相干度。当曝光时间为600 ns、计数率为5.12×10 8 s -1时,实测赝热光场的2阶和3阶相干度分别为 gT(2)(0)=1.79±0.20, gT(3)(0)=4.94±0.59。对多达4阶的光场相干度进行了测量,该结果能在理论上得到较好的解释。该实验方法有望应用于某些光源的高阶相干性测量和研究方面,对揭示光场的高阶关联行为具有一定意义。

Abstract

The high-order correlation characteristics of a light field are important features for revealing the statistical behavior of light. When the traditional HBT(Hanbury-Brown and Twiss) experimental model is used to measure the multi-photon high-order correlation, the measurement is complicated because of the limited number of single-photon detectors and splitters. In this study, we propose a fast method to measure the high-order correlation of a light field using an intensified charge-coupled device. The high-order coherence of the pseudothermal and coherent light fields can be measured and analyzed by varying the exposure time and light intensity (counting rate). The results demonstrate that the high-order coherence of a light field can be determined under appropriate conditions. When the exposure time is approximately 600 ns and the counting rate is 5.12×10 8 s -1, the measured second-order and third-order coherences of the pseudothermal light fields are g(2)T(0)=1.79±0.20 and g(3)T(0)=4.94±0.59, respectively. Note that the coherence of up to four orders has been measured and that the results can be theoretically explained. We expect that this method can be applied for measuring and studying the high-order coherence of some light sources. Furthermore, we believe that the proposed method will significantly contribute to revealing the high-order correlations of the light fields.

广告组4 - 量子光学(超导单光子,符合计数器)
补充资料

中图分类号:O436

DOI:10.3788/AOS201939.0712008

所属栏目:仪器,测量与计量

基金项目:国家重点研发计划、国家自然科学基金、“1331”重点学科建设计划;

收稿日期:2019-01-17

修改稿日期:2019-04-01

网络出版日期:2019-07-01

作者单位    点击查看

曹晋凯:山西大学光电研究所量子光学与光量子器件国家重点实验室极端光学协同创新中心, 山西 太原 030006
杨鹏飞:山西大学光电研究所量子光学与光量子器件国家重点实验室极端光学协同创新中心, 山西 太原 030006
田亚莉:山西大学光电研究所量子光学与光量子器件国家重点实验室极端光学协同创新中心, 山西 太原 030006
毋伟:山西大学光电研究所量子光学与光量子器件国家重点实验室极端光学协同创新中心, 山西 太原 030006
张鹏飞:山西大学光电研究所量子光学与光量子器件国家重点实验室极端光学协同创新中心, 山西 太原 030006
李刚:山西大学光电研究所量子光学与光量子器件国家重点实验室极端光学协同创新中心, 山西 太原 030006
张天才:山西大学光电研究所量子光学与光量子器件国家重点实验室极端光学协同创新中心, 山西 太原 030006

联系人作者:李刚(gangli@sxu.edu.cn); 张天才(tczhang@sxu.edu.cn);

备注:国家重点研发计划、国家自然科学基金、“1331”重点学科建设计划;

【1】Loudon R. The quantum theory of light. USA: Oxford Science Publications. 92, (2000).

【2】Hanbury Brown R and Twiss R Q. Correlation between photons in two coherent beams of light. Nature. 177(4497), 27-29(1956).

【3】Glauber R J. The quantum theory of optical coherence. Physical Review. 130(6), 2529-2539(1963).

【4】Glauber R J. Photon correlations. Physical Review Letters. 10(3), 84-86(1963).

【5】Mandel L. Sudarshan E C G, Wolf E. Theory of photoelectric detection of light fluctuations. Proceedings of the Physical Society. 84(3), 435-444(1964).

【6】Arecchi F T. Measurement of the statistical distribution of Gaussian and laser sources. Physical Review Letters. 15(24), 912-916(1965).

【7】Arecchi F T, Gatti E and Sona A. Time distribution of photons from coherent and Gaussian sources. Physics Letters. 20(1), 27-29(1966).

【8】Li W F, Du J J, Wen R J et al. Quantum-enhanced metrology based on Fabry-Perot interferometer by squeezed vacuum and non-Gaussian detection. Journal of Applied Physics. 115(12), (2014).

【9】Paul H. Photon antibunching. Reviews of Modern Physics. 54(4), 1061-1102(1982).

【10】Chen X H, Agafonov I N, Luo K H et al. High-visibility, high-order lensless ghost imaging with thermal light. Optics Letters. 35(8), 1166-1168(2010).

【11】Liu Y C and Kuang L M. Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation. Physical Review A. 83(5), (2011).

【12】Zhang W W, Si X F, He R Q et al. -04-01. (2015).
张闻文, 斯雪峰, 何睿清 等. -04-01. . 基于高阶鬼成像像质模型的最佳阶数拟合方法: CN104486617A. (2015).

【13】Bai B, Liu J B, Zhou Y et al. Photon superbunching of classical light in the Hanbury Brown-Twiss interferometer. Journal of the Optical Society of America B. 34(10), 2081-2088(2017).

【14】Boitier F, Godard A, Rosencher E et al. Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors. Nature Physics. 5(4), 267-270(2009).

【15】Aβmann M, Veit F, Bayer M et al. Higher-order photon bunching in a semiconductor microcavity. Science. 325(5938), 297-300(2009).

【16】Pe ina J, Hamar M, Michálek V et al. . Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera. Physical Review A. 85(2), (2012).

【17】Li Y, Zhang Y C, Zhang P F et al. Experimental study on coherence time of a light field with single photon counting. Chinese Physics Letters. 26(7), (2009).

【18】Zhang Z M. Quantum optics. 128, (2015).
张智明. 量子光学. 128, (2015).

【19】Zhang Y C, Li Y, Guo Y Q et al. Degree of fourth-order coherence by double Hanbury Brown-Twiss detections. Chinese Physics B. 19(8), (2010).

【20】Li G, Zhang T C, Li Y et al. Photon statistics of light fields based on single-photon-counting modules. Physical Review A. 71(2), (2005).

【21】Guo Y Q. Strongly coupled dual-optical microcavities system and manipulation and measurement of individual particles. Taiyuan: Shanxi University. 78-83(2013).
郭龑强. 强耦合双光学微腔系统的构建及单粒子的操控与测量. 太原: 山西大学. 78-83(2013).

【22】Statistical optics. 139, (1992).
Goodman J W and J. W. 顾德门. 统计光学. 139, (1992).

【23】Fang S D and Cao Z L. Dynamical of entangled atoms in GHZ states interacting with the Fock state field. Chinese Journal of Quantum Electronics. 23(2), 197-202(2006).
方曙东, 曹卓良. GHZ类态原子体系与Fock态光场相互作用的动力学. 量子电子学报. 23(2), 197-202(2006).

【24】Li Y, Li G, Zhang Y C et al. The effect of counting rate and time resolution on the measured photon statistical properties: experimental study of direct measurement via SPCM. Acta Physica Sinica. 55(11), 5779-5783(2006).
李园, 李刚, 张玉驰 等. 计数率和分辨时间对光场统计性质测量的影响: 单探测器直接测量的实验分析. 物理学报. 55(11), 5779-5783(2006).

引用该论文

Cao Jinkai,Yang Pengfei,Tian Yali,Wu Wei,Zhang Pengfei,Li Gang,Zhang Tiancai. Measurement of High-Order Coherence of Light Field Based on Intensified Charge-Coupled Device[J]. Acta Optica Sinica, 2019, 39(7): 0712008

曹晋凯,杨鹏飞,田亚莉,毋伟,张鹏飞,李刚,张天才. 基于增强型CCD光场高阶相干度的测量[J]. 光学学报, 2019, 39(7): 0712008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF