首页 > 论文 > 中国激光 > 46卷 > 10期(pp:1001003--1)

共振增强单色高次谐波产生

Generation of Resonantly Enhanced Monochromatic High-Order Harmonics

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

飞秒强激光与气体相互作用产生高次谐波是重要的超快相干光源,模拟发现,中红外飞秒激光脉冲可以通过交流斯塔克效应在原子基态与激发态之间实现多光子共振增强,产生高亮度的单色高次谐波辐射。通过数值求解含时薛定谔方程发现,存在阈值以下共振增强的非常规高次谐波,且在较低光强下存在一个最优光强使其可以达到最高产生效率。时间-频率分析结果表明,该共振增强可通过强场下的二阶交流斯塔克效应实现,其对驱动激光波长不敏感。这种新机制使得中红外波段的飞秒激光脉冲更有利于产生高亮度的超快单色紫外/极紫外(UV/XUV)光源,在凝聚态物理、材料科学等领域具有重要的应用前景。

Abstract

The interaction of an intense femtosecond laser with gas to produce high-order harmonics is an important ultrafast coherent light source. Our simulation shows that a mid-infrared femtosecond laser pulse can enhance the multi-photon resonance between the ground states and excited states of the atom by the ac Stark effect and generate high-brightness monochromatic high-order harmonic radiation. By solving the time-dependent Schr?dinger equation, we obtain unusual resonantly enhanced high-order harmonics below the threshold, the intensity of which is strongest at an optimal laser intensity. Further, the time-frequency analysis shows that the resonance enhancement is related to the second-order ac Stark effect in a high field, while insensitive to the laser wavelength. This new mechanism makes mid-infrared femtosecond laser pulses more conducive to the generation of ultra-fast monochrome ultraviolet/extreme ultraviolet light sources with high brightness and has important application prospects in condensed matter physics and materials science.

广告组5 - 光束分析仪
补充资料

中图分类号:O434.1

DOI:10.3788/CJL201946.1001003

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金、中国科学院战略性先导科技专项;

收稿日期:2019-03-22

修改稿日期:2019-05-13

网络出版日期:2019-10-01

作者单位    点击查看

汪丽:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049中国科学院大学, 北京 100049
薛金星:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049中国科学院大学, 北京 100049
曾志男:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
李儒新:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
徐志展:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800

联系人作者:曾志男(zhinan_zeng@mail.siom.ac.cn)

备注:国家自然科学基金、中国科学院战略性先导科技专项;

【1】Corkum P B. Plasma perspective on strong field multiphoton ionization. Physical Review Letters. 71(13), 1994-1997(1993).

【2】Lewenstein M, Balcou P, Ivanov M Y et al. Theory of high-harmonic generation by low-frequency laser fields. Physical Review A. 49(3), 2117-2132(1994).

【3】Brabec T and Krausz F. Intense few-cycle laser fields: frontiers of nonlinear optics. Reviews of Modern Physics. 72(2), 545-591(2000).

【4】Krause J L, Schafer K J and Kulander K C. High-order harmonic generation from atoms and ions in the high intensity regime. Physical Review Letters. 68(24), 3535-3538(1992).

【5】McPherson A, Gibson G, Jara H et al. . Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. Journal of the Optical Society of America B. 4(4), 595-601(1987).

【6】Zheng Y H and Xiong H. Zeng Z N et al. Spectral interference effect in high-order harmonic generation with an ellipticity-modulated driving infrared pulse. Chinese Optics Letters. 5(S1), S118-S121(2007).

【7】Wang Z G, Zeng Z N, Li R X et al. Measurement of Gouy phase shift by use of supercontinuum spectral interference. Chinese Optics Letters. 5(S1), S183-S185(2007).

【8】Xie X H, Zeng Z N, Li R X et al. Phase-matched high-order harmonic generation in static gas. Chinese Journal of Lasers. 31(s1), 161-163(2004).
谢新华, 曾志男, 李儒新 等. 静态气体相位匹配高次谐波研究. 中国激光. 31(s1), 161-163(2004).

【9】Zhang L Y, Dai Y, Zheng Y H et al. Bright high-order harmonic generation via multi-jet arrays. Chinese Journal of Lasers. 44(10), (2017).
张路遥, 戴晔, 郑颖辉 等. 采用多喷嘴阵列产生高亮度高次谐波. 中国激光. 44(10), (2017).

【10】Song H, Su N and Chen G. Influence of intensity ratio of two-beam pulses on atomic ionization and high harmonic generation in non-symmetric polarization control scheme. Acta Optica Sinica. 38(12), (2018).
宋浩, 苏宁, 陈高. 不对称偏振控制方案中两束脉冲强度比改变对原子电离及高次谐波产生的影响. 光学学报. 38(12), (2018).

【11】Xu X H, Xia C L, Guo Z W et al. Spatial distribution of high-order harmonic controlled by chirped laser pulse and isolated attosecond pulse generation. Chinese Journal of Lasers. 45(6), (2018).
徐小虎, 夏昌龙, 郭志伟 等. 啁啾场调控的高次谐波空间分布及孤立阿秒脉冲产生. 中国激光. 45(6), (2018).

【12】Zou X R, Liu L D, Ji M C et al. Sequential over-barrier ionization of multi-electron atoms in the tens-to-hundreds keV/u energy range. Chinese Physics B. 21(3), (2012).

【13】Golubovskii Y B, Maiorov V A, Behnke J et al. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen. Journal of Physics D: Applied Physics. 35(8), 751-761(2002).

【14】Siegel P H. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques. 50(3), 910-928(2002).

【15】Ferguson B and Zhang X C. Materials for terahertz science and technology. Nature Materials. 1(1), 26-33(2002).

【16】Diddams S A, Jones D J, Ye J et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Physical Review Letters. 84(22), 5102-5105(2000).

【17】Popmintchev T, Chen M C, Popmintchev D et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science. 336(6086), 1287-1291(2012).

【18】Bartels R, Backus S, Zeek E et al. Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays. Nature. 406(6792), 164-166(2000).

【19】Sansone G, Benedetti E, Calegari F et al. Isolated single-cycle attosecond pulses. Science. 314(5798), 443-446(2006).

【20】Chini M, Zhao K and Chang Z H. The generation, characterization and applications of broadband isolated attosecond pulses. Nature Photonics. 8(3), 178-186(2014).

【21】Zhao K, Zhang Q, Chini M et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Optics Letters. 37(18), 3891-3893(2012).

【22】Li J, Ren X M, Yin Y C et al. 53-attosecond X-ray pulses reach the carbon K-edge. Nature Communications. 8, (2017).

【23】Hammond T J, Brown G G, Kim K T et al. Attosecond pulses measured from the attosecond lighthouse. Nature Photonics. 10(3), 171-175(2016).

【24】Gaumnitz T, Jain A, Pertot Y et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver. Optics Express. 25(22), 27506-27518(2017).

【25】Li X X, Xu Z Z and Zhang W Q. The effect of initial population on the generation of high-order harmonics. Chinese Journal of Lasers. 24(12), 1124-1128(1997).
李学信, 徐至展, 张文琦. 初始粒子数布居对高次谐波的影响. 中国激光. 24(12), 1124-1128(1997).

【26】Strelkov V. Role of autoionizing state in resonant high-order harmonic generation and attosecond pulse production. Physical Review Letters. 104(12), (2010).

【27】Camp S, Schafer K J and Gaarde M B. Interplay between resonant enhancement and quantum path dynamics in harmonic generation in helium. Physical Review A. 92(1), (2015).

【28】Emaury F, Diebold A, Saraceno C J et al. Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator. Optica. 2(11), 980-984(2015).

【29】Boullet J, Zaouter Y, Limpert J et al. High-order harmonic generation at a megahertz-level repetition rate directly driven by an ytterbium-doped-fiber chirped-pulse amplification system. Optics Letters. 34(9), 1489-1491(2009).

【30】Ta eb R, Véniard V, Wassaf J et al. Roles of resonances and recollisions in strong-field atomic phenomena. II. High-order harmonic generation. Physical Review A. 68(3), (2003).

【31】Gaarde M B and Schafer K J. Enhancement of many high-order harmonics via a single multiphoton resonance. Physical Review A. 64(1), (2001).

【32】Dudovich N, Smirnova O, Levesque J et al. Measuring and controlling the birth of attosecond XUV pulses. Nature Physics. 2(11), 781-786(2006).

【33】Constant E, Garzella D, Breger P et al. Optimizing high harmonic generation in absorbing gases: model and experiment. Physical Review Letters. 82(8), 1668-1671(1999).

【34】Kim I J, Kim C M, Kim H T et al. Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field. Physical Review Letters. 94(24), (2005).

【35】Ngoko Djiokap J M and Starace A F. Resonant enhancement of the harmonic-generation spectrum of beryllium. Physical Review A. 88(5), (2013).

【36】Kopold R, Becker W et al. . Resonant enhancements of high-order harmonic generation. Physical Review A. 65(2), (2002).

【37】Muller H G. Numerical simulation of high-order above-threshold-ionization enhancement in argon. Physical Review A. 60(2), 1341-1350(1999).

【38】Zhou J, Peatross J, Murnane M M et al. Enhanced high-harmonic generation using 25 fs laser pulses. Physical Review Letters. 76(5), 752-755(1996).

【39】Xiong W H, Jin J Z, Peng L Y et al. Numerical observation of two sets of low-order harmonics near the ionization threshold. Physical Review A. 96(2), (2017).

【40】Liu C D, Zeng Z N, Wei P F et al. Driving-laser wavelength dependence of high-order harmonic generation in H2+ molecules . Physical Review A. 81(3), (2010).

【41】Zheng Y H, Zeng Z N, Li R X et al. Isolated-attosecond-pulse generation due to the nuclear dynamics of H2+ in a multicycle midinfrared laser field . Physical Review A. 85(2), (2012).

【42】Chini M, Zhao B Z, Wang H et al. Subcycle AC Stark shift of helium excited states probed with isolated attosecond pulses. Physical Review Letters. 109(7), (2012).

【43】Tong X M and Chu S I. Probing the spectral and temporal structures of high-order harmonic generation in intense laser pulses. Physical Review A. 61(2), (2000).

【44】Sheu Y L, Hsu L Y, Wu H T et al. A new time-frequency method to reveal quantum dynamics of atomic hydrogen in intense laser pulses: synchrosqueezing transform. AIP Advances. 4(11), (2014).

【45】Li P C, Sheu Y L, Jooya H Z et al. Exploration of laser-driven electron-multirescattering dynamics in high-order harmonic generation. Scientific Reports. 6, (2016).

引用该论文

Wang Li,Xue Jinxing,Zeng Zhinan,Li Ruxin,Xu Zhizhan. Generation of Resonantly Enhanced Monochromatic High-Order Harmonics[J]. Chinese Journal of Lasers, 2019, 46(10): 1001003

汪丽,薛金星,曾志男,李儒新,徐志展. 共振增强单色高次谐波产生[J]. 中国激光, 2019, 46(10): 1001003

被引情况

【1】王向林,徐鹏,李捷,袁浩,白永林,王屹山,赵卫. 利用自研阿秒条纹相机测得159 as孤立阿秒脉冲. 中国激光, 2020, 47(4): 415002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF