中国激光, 2019, 46 (10): 1001003, 网络出版: 2019-10-25   

共振增强单色高次谐波产生 下载: 1513次

Generation of Resonantly Enhanced Monochromatic High-Order Harmonics
作者单位
1 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
2 中国科学院大学材料与光电研究中心, 北京 100049
3 中国科学院大学, 北京 100049
引用该论文

汪丽, 薛金星, 曾志男, 李儒新, 徐至展. 共振增强单色高次谐波产生[J]. 中国激光, 2019, 46(10): 1001003.

Li Wang, Jinxing Xue, Zhinan Zeng, Ruxin Li, Zhizhan Xu. Generation of Resonantly Enhanced Monochromatic High-Order Harmonics[J]. Chinese Journal of Lasers, 2019, 46(10): 1001003.

参考文献

[1] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 1993, 71(13): 1994-1997.

[2] Lewenstein M, Balcou P, Ivanov M Y, et al. Theory of high-harmonic generation by low-frequency laser fields[J]. Physical Review A, 1994, 49(3): 2117-2132.

[3] Brabec T, Krausz F. Intense few-cycle laser fields: frontiers of nonlinear optics[J]. Reviews of Modern Physics, 2000, 72(2): 545-591.

[4] Krause J L, Schafer K J, Kulander K C. High-order harmonic generation from atoms and ions in the high intensity regime[J]. Physical Review Letters, 1992, 68(24): 3535-3538.

[5] McPherson A, Gibson G, Jara H, et al. . Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases[J]. Journal of the Optical Society of America B, 1987, 4(4): 595-601.

[6] Zheng Y H, Xiong H. Zeng Z N et al. Spectral interference effect in high-order harmonic generation with an ellipticity-modulated driving infrared pulse[J]. Chinese Optics Letters, 2007, 5(S1): S118-S121.

[7] Wang Z G, Zeng Z N, Li R X, et al. Measurement of Gouy phase shift by use of supercontinuum spectral interference[J]. Chinese Optics Letters, 2007, 5(S1): S183-S185.

[8] 谢新华, 曾志男, 李儒新, 等. 静态气体相位匹配高次谐波研究[J]. 中国激光, 2004, 31(s1): 161-163.

    Xie X H, Zeng Z N, Li R X, et al. Phase-matched high-order harmonic generation in static gas[J]. Chinese Journal of Lasers, 2004, 31(s1): 161-163.

[9] 张路遥, 戴晔, 郑颖辉, 等. 采用多喷嘴阵列产生高亮度高次谐波[J]. 中国激光, 2017, 44(10): 1001002.

    Zhang L Y, Dai Y, Zheng Y H, et al. Bright high-order harmonic generation via multi-jet arrays[J]. Chinese Journal of Lasers, 2017, 44(10): 1001002.

[10] 宋浩, 苏宁, 陈高. 不对称偏振控制方案中两束脉冲强度比改变对原子电离及高次谐波产生的影响[J]. 光学学报, 2018, 38(12): 1219001.

    Song H, Su N, Chen G. Influence of intensity ratio of two-beam pulses on atomic ionization and high harmonic generation in non-symmetric polarization control scheme[J]. Acta Optica Sinica, 2018, 38(12): 1219001.

[11] 徐小虎, 夏昌龙, 郭志伟, 等. 啁啾场调控的高次谐波空间分布及孤立阿秒脉冲产生[J]. 中国激光, 2018, 45(6): 0601007.

    Xu X H, Xia C L, Guo Z W, et al. Spatial distribution of high-order harmonic controlled by chirped laser pulse and isolated attosecond pulse generation[J]. Chinese Journal of Lasers, 2018, 45(6): 0601007.

[12] Zou X R, Liu L D, Ji M C, et al. Sequential over-barrier ionization of multi-electron atoms in the tens-to-hundreds keV/u energy range[J]. Chinese Physics B, 2012, 21(3): 033401.

[13] Golubovskii Y B, Maiorov V A, Behnke J, et al. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen[J]. Journal of Physics D: Applied Physics, 2002, 35(8): 751-761.

[14] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928.

[15] Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 2002, 1(1): 26-33.

[16] Diddams S A, Jones D J, Ye J, et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Physical Review Letters, 2000, 84(22): 5102-5105.

[17] Popmintchev T, Chen M C, Popmintchev D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 2012, 336(6086): 1287-1291.

[18] Bartels R, Backus S, Zeek E, et al. Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays[J]. Nature, 2000, 406(6792): 164-166.

[19] Sansone G, Benedetti E, Calegari F, et al. Isolated single-cycle attosecond pulses[J]. Science, 2006, 314(5798): 443-446.

[20] Chini M, Zhao K, Chang Z H. The generation, characterization and applications of broadband isolated attosecond pulses[J]. Nature Photonics, 2014, 8(3): 178-186.

[21] Zhao K, Zhang Q, Chini M, et al. Tailoring a 67 attosecond pulse through advantageous phase-mismatch[J]. Optics Letters, 2012, 37(18): 3891-3893.

[22] Li J, Ren X M, Yin Y C, et al. 53-attosecond X-ray pulses reach the carbon K-edge[J]. Nature Communications, 2017, 8: 186.

[23] Hammond T J, Brown G G, Kim K T, et al. Attosecond pulses measured from the attosecond lighthouse[J]. Nature Photonics, 2016, 10(3): 171-175.

[24] Gaumnitz T, Jain A, Pertot Y, et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 2017, 25(22): 27506-27518.

[25] 李学信, 徐至展, 张文琦. 初始粒子数布居对高次谐波的影响[J]. 中国激光, 1997, 24(12): 1124-1128.

    Li X X, Xu Z Z, Zhang W Q. The effect of initial population on the generation of high-order harmonics[J]. Chinese Journal of Lasers, 1997, 24(12): 1124-1128.

[26] Strelkov V. Role of autoionizing state in resonant high-order harmonic generation and attosecond pulse production[J]. Physical Review Letters, 2010, 104(12): 123901.

[27] Camp S, Schafer K J, Gaarde M B. Interplay between resonant enhancement and quantum path dynamics in harmonic generation in helium[J]. Physical Review A, 2015, 92(1): 013404.

[28] Emaury F, Diebold A, Saraceno C J, et al. Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator[J]. Optica, 2015, 2(11): 980-984.

[29] Boullet J, Zaouter Y, Limpert J, et al. High-order harmonic generation at a megahertz-level repetition rate directly driven by an ytterbium-doped-fiber chirped-pulse amplification system[J]. Optics Letters, 2009, 34(9): 1489-1491.

[30] Taïeb R, Véniard V, Wassaf J, et al. Roles of resonances and recollisions in strong-field atomic phenomena. II. High-order harmonic generation[J]. Physical Review A, 2003, 68(3): 033403.

[31] Gaarde M B, Schafer K J. Enhancement of many high-order harmonics via a single multiphoton resonance[J]. Physical Review A, 2001, 64(1): 013820.

[32] Dudovich N, Smirnova O, Levesque J, et al. Measuring and controlling the birth of attosecond XUV pulses[J]. Nature Physics, 2006, 2(11): 781-786.

[33] Constant E, Garzella D, Breger P, et al. Optimizing high harmonic generation in absorbing gases: model and experiment[J]. Physical Review Letters, 1999, 82(8): 1668-1671.

[34] Kim I J, Kim C M, Kim H T, et al. Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field[J]. Physical Review Letters, 2005, 94(24): 243901.

[35] Ngoko Djiokap J M, Starace A F. Resonant enhancement of the harmonic-generation spectrum of beryllium[J]. Physical Review A, 2013, 88(5): 053412.

[36] Kopold R, Becker W, et al. . Resonant enhancements of high-order harmonic generation[J]. Physical Review A, 2002, 65(2): 023404.

[37] Muller H G. Numerical simulation of high-order above-threshold-ionization enhancement in argon[J]. Physical Review A, 1999, 60(2): 1341-1350.

[38] Zhou J, Peatross J, Murnane M M, et al. Enhanced high-harmonic generation using 25 fs laser pulses[J]. Physical Review Letters, 1996, 76(5): 752-755.

[39] Xiong W H, Jin J Z, Peng L Y, et al. Numerical observation of two sets of low-order harmonics near the ionization threshold[J]. Physical Review A, 2017, 96(2): 023418.

[40] Liu C D, Zeng Z N, Wei P F, et al. Driving-laser wavelength dependence of high-order harmonic generation in H2+ molecules[J]. Physical Review A, 2010, 81(3): 033426.

[41] Zheng Y H, Zeng Z N, Li R X, et al. Isolated-attosecond-pulse generation due to the nuclear dynamics of H2+ in a multicycle midinfrared laser field[J]. Physical Review A, 2012, 85(2): 023410.

[42] Chini M, Zhao B Z, Wang H, et al. Subcycle AC Stark shift of helium excited states probed with isolated attosecond pulses[J]. Physical Review Letters, 2012, 109(7): 073601.

[43] Tong X M, Chu S I. Probing the spectral and temporal structures of high-order harmonic generation in intense laser pulses[J]. Physical Review A, 2000, 61(2): 021802.

[44] Sheu Y L, Hsu L Y, Wu H T, et al. A new time-frequency method to reveal quantum dynamics of atomic hydrogen in intense laser pulses: synchrosqueezing transform[J]. AIP Advances, 2014, 4(11): 117138.

[45] Li P C, Sheu Y L, Jooya H Z, et al. Exploration of laser-driven electron-multirescattering dynamics in high-order harmonic generation[J]. Scientific Reports, 2016, 6: 32763.

汪丽, 薛金星, 曾志男, 李儒新, 徐至展. 共振增强单色高次谐波产生[J]. 中国激光, 2019, 46(10): 1001003. Li Wang, Jinxing Xue, Zhinan Zeng, Ruxin Li, Zhizhan Xu. Generation of Resonantly Enhanced Monochromatic High-Order Harmonics[J]. Chinese Journal of Lasers, 2019, 46(10): 1001003.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!