首页 > 论文 > 激光与光电子学进展 > 57卷 > 7期(pp:71402--1)

光纤激光深熔焊接小孔形成过程的研究

Research on Formation Process of Keyhole During Fiber Laser Deep Penetration Welding

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为研究小孔的形成过程,在光纤激光平板扫描焊接低碳钢中,采用调制激光出光时间的方式进行实验。结果表明:小孔的形成过程极为迅速,完整的形成时间在ms量级。低速焊接时,小孔的形成过程包括急速增加、缓慢增加和基本稳定不变三个阶段。高速焊接时,小孔的形成过程仅有急速增加过程。进一步实验结果表明:小孔的形成时间不超过激光焊接特征时间,且激光焊接特征时间随焊接速度的增加而减小,这是高速焊接时小孔仅有快速形成过程的原因。

Abstract

In order to study the formation process of keyhole, in the fiber laser plate scanning welding of low carbon steel, experiment was carried out by modulating laser light-out time. Experimental results show that the formation process of keyhole is extremely rapid, and the whole formation time of a keyhole is in ms level. In low-speed welding, the formation process of keyhole includes three stages: rapid increase, slow increase, and roughly stabilized stage. During high-speed welding, the formation process of keyhole only includes rapid formation stage. Further experiments show that the formation time of keyhole is not exceeding the characteristic time of laser welding and the characteristic time of laser welding decreases with the increase of welding speed, which together explain why keyhole formation only includes the rapid formation stage in high-speed welding.

中国激光微信矩阵
补充资料

中图分类号:TG456.7

DOI:10.3788/LOP57.071402

所属栏目:激光器与激光光学

基金项目:国家自然科学基金、北京市教委科技计划一般项目;

收稿日期:2019-10-30

修改稿日期:2019-11-13

网络出版日期:2020-04-01

作者单位    点击查看

赵乐:北京工业大学激光工程研究院高功率及超快激光先进制造实验室, 北京 100124
韩雪:北京工业大学激光工程研究院高功率及超快激光先进制造实验室, 北京 100124
邹江林:北京工业大学激光工程研究院高功率及超快激光先进制造实验室, 北京 100124
郑凯:中国中车青岛四方机车车辆股份有限公司, 山东 青岛 266111
肖荣诗:北京工业大学激光工程研究院高功率及超快激光先进制造实验室, 北京 100124
武强:北京工业大学激光工程研究院高功率及超快激光先进制造实验室, 北京 100124

联系人作者:邹江林(zoujianglin1@163.com)

备注:国家自然科学基金、北京市教委科技计划一般项目;

【1】Li M, Zhang W, Hua X M, et al. Investigation of plasma and metal transfer dynamic behavior during fiber laser GMAW-P hybrid welding [J]. Chinese Journal of Lasers. 2017, 44(4): 0402008.
李敏, 张旺, 华学明, 等. 光纤激光与GMAW-P复合焊接等离子体及熔滴过渡动态特征研究 [J]. 中国激光. 2017, 44(4): 0402008.

【2】Ren Y, Wu Q, Zou J L, et al. Real-time monitoring of coaxial protection fiber laser welding of austenitic stainless steels [J]. Chinese Journal of Lasers. 2017, 44(5): 0502003.
任勇, 武强, 邹江林, 等. 奧氏体不锈钢光纤激光同轴保护焊接的实时监测 [J]. 中国激光. 2017, 44(5): 0502003.

【3】Xin J J, Fang C, Song Y T, et al. Autogenous laser welding of 20-mm-thick 316LN stainless steel plate by ultra high power fiber lasers [J]. Chinese Journal of Lasers. 2018, 45(5): 0502007.
信纪军, 方超, 宋云涛, 等. 20 mm厚316LN不锈钢板的超高功率光纤激光自熔焊 [J]. 中国激光. 2018, 45(5): 0502007.

【4】Wang J, Wang C M, Meng X X, et al. Study on the periodic oscillation of plasma/vapour induced during high power fibre laser penetration welding [J]. Optics & Laser Technology. 2012, 44(1): 67-70.

【5】Gao M, Chen C, Hu M, et al. Characteristics of plasma plume in fiber laser welding of aluminum alloy [J]. Applied Surface Science. 2015, 326: 181-186.

【6】Zhao L, Tsukamoto S, Arakane G, et al. Influence of welding parameters on weld depth and porosity in high power fiber laser welding [J]. Chinese Journal of Lasers. 2013, 40(11): 1103004.
赵琳, 塜本进, 荒金吾郎, 等. 大功率光纤激光焊接过程中工艺参数对熔深和气孔的影响 [J]. 中国激光. 2013, 40(11): 1103004.

【7】Zou J L, Yang W X, Wu S K, et al. Effect of plume on weld penetration during high-power fiber laser welding [J]. Journal of Laser Applications. 2016, 28(2): 022003.

【8】Martin B, Loredo A, Pilloz M, et al. Characterisation of CW Nd∶YAG laser keyhole dynamics [J]. Optics & Laser Technology. 2001, 33(4): 201-207.

【9】Jin X Z, Zeng L C, Cheng Y Y. Direct observation of keyhole plasma characteristics in deep penetration laser welding of aluminum alloy 6016 [J]. Journal of Physics D: Applied Physics. 2012, 45(24): 245205.

【10】Katayama S, Kawahito Y, Mizutani M. Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects [J]. Physics Procedia. 2010, 5: 9-17.

【11】Semak V V, Bragg W D, Damkroger B, et al. Transient model for the keyhole during laser welding [J]. Journal of Physics D: Applied Physics. 1999, 32(15): L61-L64.

【12】Wang H Z, Zou Y. Microscale interaction between laser and metal powder in powder-bed additive manufacturing: conduction mode versus keyhole mode [J]. International Journal of Heat and Mass Transfer. 2019, 142: 118473.

【13】Semak V V, Steele R J, Fuerschbach P W, et al. Role of beam absorption in plasma during laser welding [J]. Journal of Physics D: Applied Physics. 2000, 33(10): 1179-1185.

【14】Luo M, Shin Y C. Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding [J]. Optics and Lasers in Engineering. 2015, 64: 59-70.

【15】Zhang Y, Chen G Y, Wei H Y, et al. A novel “sandwich” method for observation of the keyhole in deep penetration laser welding [J]. Optics and Lasers in Engineering. 2008, 46(2): 133-139.

【16】Fujinaga S, Takenaka H, Narikiyo T, et al. Direct observation of keyhole behaviour during pulse modulated high-power Nd∶YAG laser irradiation [J]. Journal of Physics D: Applied Physics. 2000, 33(5): 492-497.

【17】Courtois M, Carin M, Masson P L, et al. A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding [J]. Journal of Physics D: Applied Physics. 2013, 46(50): 505305.

【18】Kaplan A F H, Matti R S. Absorption peaks depending on topology of the keyhole front and wavelength [J]. Journal of Laser Applications. 2015, 27(S2): S29012.

引用该论文

Zhao Le,Han Xue,Zou Jianglin,Zheng Kai,Xiao Rongshi,Wu Qiang. Research on Formation Process of Keyhole During Fiber Laser Deep Penetration Welding[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071402

赵乐,韩雪,邹江林,郑凯,肖荣诗,武强. 光纤激光深熔焊接小孔形成过程的研究[J]. 激光与光电子学进展, 2020, 57(7): 071402

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF