首页 > 论文 > 中国激光 > 47卷 > 3期(pp:310003--1)

地基差分吸收激光雷达垂直探测大气压力初步实验

Preliminary Investigation of Vertical Measurement of Atmospheric Pressure Using Ground-Based Differential Absorption Lidar

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

大气压力是最重要的气象要素之一。为了实现空间激光遥感大气压力,需要先进行必要的地基激光雷达探测实验研究。以单纵模Nd∶YAG激光器的二倍频532 nm激光脉冲作为泵浦源,以KTP(KTiOPO4)晶体作为非线性转换介质的光参量振荡器和光参量放大器,产生了760.236 nm和760.307 nm 波长的两种激光脉冲,脉冲能量为40 mJ,采用?350 mm望远镜接收大气的后向散射,从而获得了不同高度处与激光雷达之间双波长的差分光学厚度。有效探测高度为500~4000 m,时间分辨率为1~5 min。实验结果表明,差分光学厚度对应着大气层不同高度处与激光雷达间的压力差,其对应关系的数值表达是可以期待的。

Abstract

Atmospheric pressure is one of the most important meteorological parameters. In this work, to realize spaceborne laser remote sensing of atmospheric pressure, ground-based lidar measurement investigations are conducted. A 532-nm laser pulse produced by the second-frequency of a single longitudinal-mode Nd∶YAG laser is used as a pump source. An optical parametric oscillator and an optical parametric amplifier using a KTP (KTiOPO4) crystal as a nonlinear conversion medium generate two laser pulses with wavelengths of 760.236 and 760.307 nm, with the pulse energy reaching 40 mJ. A ?350-mm telescope receives the backscattering of the atmosphere, the differential optical depth of two wavelengths between different altitudes and the lidar is obtained. The effective detection altitudes range of the ground-based differential absorption lidar is 500--4000 m, and the time resolution is 1--5 min. The investigations show that the differential optical depth corresponds to the pressure difference between different altitudes of the atmosphere and the lidar, and a numerical expression of the corresponding relationship can be obtained.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN959.4

DOI:10.3788/CJL202047.0310003

所属栏目:遥感与传感器

基金项目:国家自然科学基金;

收稿日期:2019-09-20

修改稿日期:2019-10-28

网络出版日期:2020-03-01

作者单位    点击查看

洪光烈:中国科学院上海技术物理研究所, 中国科学院空间主动光电技术重点实验室, 上海 200083
王钦:中国科学院上海技术物理研究所, 中国科学院空间主动光电技术重点实验室, 上海 200083中国科学院大学, 北京 100049
王建宇:中国科学院上海技术物理研究所, 中国科学院空间主动光电技术重点实验室, 上海 200083中国科学院大学, 北京 100049
梁新栋:中国科学院上海技术物理研究所, 中国科学院空间主动光电技术重点实验室, 上海 200083中国科学院大学, 北京 100049
孔伟:中国科学院上海技术物理研究所, 中国科学院空间主动光电技术重点实验室, 上海 200083
李虎:中国科学院上海技术物理研究所, 中国科学院空间主动光电技术重点实验室, 上海 200083中国科学院大学, 北京 100049

联系人作者:王建宇(jywang@163.com)

备注:国家自然科学基金;

【1】Hong G L, Li J T, Kong W, et al. 935 nm differential absorption lidar system and water vapor profiles in convective boundary layer [J]. Acta Optica Sinica. 2017, 37(2): 0201003.
洪光烈, 李嘉唐, 孔伟, 等. 935 nm差分吸收激光雷达系统及对流边界层水汽廓线探测 [J]. 光学学报. 2017, 37(2): 0201003.

【2】Wang Y F, Gao F, Zhu C X, et al. Raman lidar for atmospheric temperature, humidity and aerosols up to troposphere height [J]. Acta Optica Sinica. 2015, 35(3): 0328004.
王玉峰, 高飞, 朱承炫, 等. 对流层高度大气温度、湿度和气溶胶的拉曼激光雷达系统 [J]. 光学学报. 2015, 35(3): 0328004.

【3】Shibata T, Kobuchi M, Maeda M. Measurements of density and temperature profiles in the middle atmosphere with a XeF lidar [J]. Applied Optics. 1986, 25(5): 685-687.

【4】Hauchecorne A, Chanin M L. Density and temperature profiles obtained by lidar between 35 and 70 km [J]. Geophysical Research Letters. 1980, 7(8): 565-568.

【5】Shimizu H, Lee S A, She C Y. High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters [J]. Applied Optics. 1983, 22(9): 1373-1381.

【6】She C Y, Alvarez R J, Caldwell L M, et al. High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles [J]. Optics Letters. 1992, 17(7): 541-543.

【7】Korb C L, Weng C Y. Differential absorption lidar technique for measurement of the atmospheric pressure profile [J]. Applied Optics. 1983, 22(23): 3759-3770.

【8】Schwemmer G K, Dombrowski M, Korb C L, et al. A lidar system for measuring atmospheric pressure and temperature profiles [J]. Review of Scientific Instruments. 1987, 58(12): 2226-2237.

【9】Korb C L, Schwemmer G K, Dombrowski M, et al. Airborne and ground based lidar measurements of the atmospheric pressure profile [J]. Applied Optics. 1989, 28(15): 3015-3020.

【10】Flamant C N, Schwemmer G K, Korb C L, et al. Pressure measurements using an airborne differential absorption lidar. Part I: analysis of the systematic error sources [J]. Journal of Atmospheric and Oceanic Technology. 1999, 16(5): 561-574.

【11】Stephen M, Krainak M, Riris H, et al. Narrowband, tunable, frequency-doubled, erbium-doped fiber-amplifed transmitter [J]. Optics Letters. 2007, 32(15): 2073-2075.

【12】Stephen M A, Mao J P, Abshire J B, et al. Oxygen spectroscopy laser sounding instrument for remote sensing of atmospheric pressure . [C]∥Digital Holography and Three-Dimensional Imaging, March 17-19, 2008, St. Petersburg, Florida, United States. Washington, D.C.: OSA. 2008, JMA19.

【13】Riris H, Rodriguez M D, Allan G R, et al. Airborne lidar measurements of atmospheric pressure made using the oxygen A-band . [C]∥Lasers, Sources, and Related Photonic Devices, January 29-February 1, 2012, San Diego, California, United States. Washington, D.C.: OSA. 2012, LT2B: 5.

【14】Riris H, Rodriguez M, Allan G R, et al. Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm [J]. Applied Optics. 2013, 52(25): 6369-6382.

【15】Hong G L, Wang Q, Kong W, et al. Operating wavelength selection for spaceborne differential absorption lidar measuring surface pressure [J]. Journal of Infrared and Millimeter Waves. 2018, 37(2): 206-211.
洪光烈, 王钦, 孔伟, 等. 空间差分吸收激光雷达探测地表大气压力的波长选择 [J]. 红外与毫米波学报. 2018, 37(2): 206-211.

【16】Wang Q. Research on 760 nm Lidar for Atmospheric Pressure Measurement [D]. Beijing: University of Chinese Academy of Sciences. 2019.
王钦. 基于760 nm 波段激光雷达探测大气压强的方法研究 [D]. 北京: 中国科学院大学. 2019.

【17】Hong G L, Wang Q, Xiao C L, et al. A laser transmitter of differential absorption lidar for atmospheric pressure measurement [J]. Journal of Infrared and Millimeter Waves. 2019, 38(4): 451-458.
洪光烈, 王钦, 肖春雷, 等. 探测大气压力的差分吸收激光雷达的一种光发射机 [J]. 红外与毫米波学报. 2019, 38(4): 451-458.

【18】He Y, Baxter G W, Orr B J. Locking the cavity of a pulsed periodically poled lithium niobate optical parametric oscillator to the wavelength of a continuous-wave injection seeder by an “intensity-dip” method [J]. Review of Scientific Instruments. 1999, 70(8): 3203-3213.

引用该论文

Hong Guanglie,Wang Qin,Wang Jianyu,Liang Xindong,Kong Wei,Li Hu. Preliminary Investigation of Vertical Measurement of Atmospheric Pressure Using Ground-Based Differential Absorption Lidar[J]. Chinese Journal of Lasers, 2020, 47(3): 0310003

洪光烈,王钦,王建宇,梁新栋,孔伟,李虎. 地基差分吸收激光雷达垂直探测大气压力初步实验[J]. 中国激光, 2020, 47(3): 0310003

被引情况

【1】狄慧鸽,王建宇,赵煊,韩堩,文晓难,张星琦,王玉峰,宋跃辉,华灯鑫. 转动/振动拉曼激光雷达探测大气压力廓线的方法研究. 光学学报, 2020, 40(15): 1501001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF