作者单位
摘要
1 中国科学院上海技术物理研究所空间主动光电技术重点实验室,上海 200083
2 中国科学院大学,北京 100049
3 中国科学院大气物理研究所中层大气和全球环境探测重点实验室,北京 100029
针对激光掩星探测对流层中上层到平流层下层高度范围内大气温度和压强的反演方法,进行了研究和仿真分析。选择对温度不敏感而对压强敏感的吸收线,利用吸收系数与吸收截面和压强的关系,通过迭代方式求解得到压强。选择弱吸收峰附近的吸收线,利用吸收系数与压强和温度的关系,根据反演得到的压强值通过迭代方式求解得到温度。为减小大气中其他气体吸收以及大气散射等消光因素对反演结果的影响,仿真过程采用差分波长的方法,在氧气A吸收带内,选取合适的吸收线,利用激光掩星差分透过率数据由Abel积分反变换反演得到各个激光轨迹切点高度处的差分吸收系数廓线,然后利用差分吸收系数反演各个切点高度处的压强和温度。仿真结果显示:压强反演误差主要受差分吸收系数反演误差的影响,随高度下降呈不断增大的趋势,最大误差约为6%;根据反演得到的压强值对温度进行反演,温度反演误差主要受压强和差分吸收系数反演误差的影响;两种影响部分抵消,最大温度反演误差在5 km高度附近约为1.5 K。建立误差模型进行分析,对反演误差中出现的一些变化趋势和影响因素进行解释。在去除差分吸收系数反演误差的条件下,对压强和温度进行1次循环求解,得到压强最大反演误差约为0.3%,温度最大反演误差约为1 K,将该条件下温度和压强的反演误差与有差分吸收系数反演误差时的反演误差进行对比,证实了减小差分吸收系数反演误差的重要性。
大气光学 温度和压强反演 差分吸收系数 迭代法 误差分析 
激光与光电子学进展
2021, 58(3): 0301002
作者单位
摘要
中国科学院空间主动光电技术重点实验室, 中国科学院上海技术物理研究所, 上海 200083
大气二氧化碳作为最重要的温室气体之一, 它的变化和分布备受关注, 差分吸收激光雷达(DIAL)系统是探测大气二氧化碳浓度的重要手段, 对于研究温室气体的源和汇具有重要意义。 主要研究正弦调制连续波差分吸收激光雷达在水平路径上探测CO2平均浓度, 利用HITRAN数据库中CO2及H2O的吸收光谱, 综合考虑CO2的吸收截面及H2O的干扰, 选择差分吸收激光雷达的工作波长On-line: 1 572.335 nm, Off-line: 1 572.180 nm; 声光调制器取代电光调制器对连续波激光强度进行正弦波调制, 两路调制信号频率有细微差别, 其中On-line调制频率为101.833 kHz, Off-line调制频率为99.733 kHz; On-line光源激光器通过光谱调制技术将激光频率锁定在气体池吸收峰1 572.335 nm处, 并采用在相位调制器上施加直流偏置反馈电压来消除相位调制器的残余幅度调制(RAM), 使波长锁定精度大幅提高, 激光频率锁定系统实现On-line光源激光器在12小时输出波长均方根误差为0.05 pm; 在CPU中实现快速傅立叶变换获取回波光信号和发射监视端激光强度的功率谱, 并选择窗函数和频谱校正算法来提高计算精度; 通过调制连续波激光强度的正弦波相位鉴别获取路径的长度; 系统光路为光纤光路, 使其结构紧凑; 对系统进行外场实验和对比实验; 获取上海市区1.3 km路径上二氧化碳平均浓度, 实验数据显示系统观测精度为4 ppm(百万分之一), 且探测到的CO2日变化趋势与二氧化碳点探测器LI-7500A探测到的日变化趋势相吻合。
路径积分差分吸收激光雷达IPDA CO2柱浓度(混合比) 声光强度调制 激光频率锁定 激光相位测距 Integral path differential absorption lidar IPDA CO2 column-averaged mixing ratios Acoustic-optic intensity modulation Laser frequency locking Phased laser rangefinders 
光谱学与光谱分析
2020, 40(12): 3653
作者单位
摘要
1 中国科学院上海技术物理研究所中国科学院空间主动光电技术重点实验室, 上海 200083
2 中国科学院大学,北京 100049
3 中国科学院大气物理研究所中国科学院中层大气与全球环境探测重点实验室, 北京 100029
对流层顶-平流层下区域(UTLS)的水汽分子密度对于研究全球变化、大气物质能量交换具有十分重要的意义,激光掩星技术可能是 一种探测该区域水汽的有效手段。掩星对于大气探测的核心思想源于阿贝尔(Abel)变换。GPS掩星的阿贝尔积分变换表达的是 连线的折射角与切点处折射率之间的关系,而与GPS掩星的阿贝尔积分变换不同的是,激光掩星的阿贝尔积分变换建立的是全路 径大气光学厚度与切点处大气消光系数之间的关系。从光线的程函方程出发,通过变量替换、坐标置换,从而建立起 大气光学厚度与大气消光系数之间的关系。由于光在切点处大气的消光系数和该处大气的水汽浓度成正比,因此分别在微 卫星和微卫星之间发射、接收0.935 μm掩星激光脉冲,连接两者之间的光束穿过大气层,计算积分路径上其水汽双波长 差分光学厚度,由阿贝尔积分变换反演即可获得光束路径切点处水汽浓度。随着掩星连线的上下移动,连线切点高度随着卫星 相向或背向而行而变化形成水汽浓度廓线。由于激光束发散角小,因此由激光掩星方法获得的水汽廓线高程精度高, 水汽的吸收消光可以直接得到水汽的分子密度,优于GPS掩星的相位延迟间接方法,可以更直接精确地探测大气对流层顶-平 流层下区域的水汽分子密度。此外,研究表明激光掩星方法的光谱分辨率优于太阳掩星方法的光谱分辨率。
激光掩星 阿贝尔变换 差分光学厚度 水汽浓度 laser occultation Abel transformation differential optical depth the volume mixing ratio of vapor 
大气与环境光学学报
2020, 15(3): 180
作者单位
摘要
1 中国科学院上海技术物理研究所空间主动光电技术重点实验室, 上海 200083
2 中国科学院国家天文台月球与深空探测重点实验室, 北京 100101
3 国防科技大学脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
4 中国科学院大学, 北京 100049
以马赫-曾德尔干涉仪作为谱分析器,进行了多普勒频移和气溶胶的非相干探测模拟实验。在发射机脉冲能量为500 mJ,重复频率为10 Hz,光谱线宽不超过0.005 cm -1,光束发散角小于0.10 mrad,接收望远镜镜头直径为350 mm,以雪崩二极管为探测器,数字采样率为2×10 7 sampling/s,采样数据位数为16 bit(有效位数为11 bit)的条件下,获得了45°斜程探测距离为2500 m的风廓线,视线风速探测精度为2 m·s -1。模拟结果显示,以马赫-曾德尔干涉仪作为谱分析器的激光雷达可用于火星风沙直接探测。相对于354.7 nm激光脉冲,1064 nm激光脉冲(可以与激光诱导击穿光谱仪兼容)回波的干涉对比度高,Mie后向散射强度高于Rayleigh后向散射强度。
遥感 激光雷达 马赫-曾德尔干涉仪 多普勒频移 大气后向散射 直接探测 
光学学报
2020, 40(7): 0728002
洪光烈 1王钦 1,2王建宇 1,2,*梁新栋 1,2[ ... ]李虎 1,2
作者单位
摘要
1 中国科学院上海技术物理研究所, 中国科学院空间主动光电技术重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
大气压力是最重要的气象要素之一。为了实现空间激光遥感大气压力,需要先进行必要的地基激光雷达探测实验研究。以单纵模Nd∶YAG激光器的二倍频532 nm激光脉冲作为泵浦源,以KTP(KTiOPO4)晶体作为非线性转换介质的光参量振荡器和光参量放大器,产生了760.236 nm和760.307 nm 波长的两种激光脉冲,脉冲能量为40 mJ,采用?350 mm望远镜接收大气的后向散射,从而获得了不同高度处与激光雷达之间双波长的差分光学厚度。有效探测高度为500~4000 m,时间分辨率为1~5 min。实验结果表明,差分光学厚度对应着大气层不同高度处与激光雷达间的压力差,其对应关系的数值表达是可以期待的。
遥感 遥感器 差分吸收激光雷达 光参量振荡器 光参量放大器 差分光学厚度 大气压力 
中国激光
2020, 47(3): 0310003
作者单位
摘要
1 中国科学院上海技术物理研究所中国科学院空间主动光电技术重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
3 中国科学院大气物理研究所中层大气和全球环境探测重点实验室, 北京 100029
在低轨道空间站和伴飞卫星上分别安置激光发射机和接收机,同时发射和接收935 nm短波红外水汽探测激光束脉冲对和765 nm(位于氧气的A吸收带)近红外激光束脉冲对。935 nm波段激光脉冲的一个探测波长对水汽的吸收较强,另一个参考波长对水汽的吸收相对较弱;765 nm波段激光脉冲的一个波长对氧气的吸收较强和另一个波长对氧气的吸收较弱。光连线全程的双波长差分光学厚度和连线切点处的差分消光系数之间存在Abel变换关系。基于Abel积分变换,利用理想气体状态定律和大气准静态方程,用大气模式作为初值条件,进行数值计算。765 nm波长对用来反演大气的压强和温度,935 nm波长对用来反演大气水汽的密度。获得的水汽廓线分布的仿真结果以及误差分布表明,激光掩星具有探测对流层上-平流层下这一高度(5~14 km)的水汽含量的潜力。
大气光学 水汽混合比 差分光学厚度 差分消光系数 Abel变换 
光学学报
2020, 40(4): 0401001
洪光烈 1,*李嘉唐 1,2王建宇 1,2李虎 1,2[ ... ]孔伟 1
作者单位
摘要
1 中国科学院上海技术物理研究所 中国科学院空间主动光电技术科技创新重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
3 中国科学院大气物理研究所 中层大气和全球环境探测重点实验室, 北京 100029
为了更好地探测对流层大气水汽的垂直廓线, 对已经建立的935 nm差分吸收激光雷达进行了部分改进。采取双通道接收的措施, 近场通道望远镜同时也是发射激光的扩束器, 近场通道采用偏振分束器加四分之一波片的方式隔离发射光和回波光, 远场通道(主通道)采用平行旁轴的卡塞格林望远镜, 从而减小激光雷达近地面盲区; 发射机的双波长挪到936.0~936.5 nm之间, 增加了注入种子激光的功率, 提高发射光谱纯度, 从而提高探测精度。探测范围从600~2 000 m, 延展到250~3 000 m, 随机误差5%。
差分吸收激光雷达 大气对流层水汽 后向散射 垂直范围 differential absorption lidar(DIAL) vapor of troposphere backscattering vertical range 
红外与激光工程
2019, 48(12): 1203009
洪光烈 1,2,*王钦 1,3肖春雷 1,2孔伟 1,2王建宇 1,3
作者单位
摘要
1 中国科学院空间主动光电技术重点实验室,上海 200083
2 中国科学院上海技术物理研究所,上海 200083
3 中国科学院大学,北京 100049
介绍了一种氧气A带差分吸收激光雷达发射机,试图用于大气压力探测实验.该激光发射机是基于种子注入的光参量振荡器和光参量放大器的结构.作为从振荡器,采用一个环形腔KTP光参量振荡器.作为注入种子的主振荡器,即一个连续波外腔调谐二极管激光器.该连续波外腔调谐二极管激光器,由高精度的波长计构成的一个PID(Proportional-Integral-Derivative)伺服控制环,稳定其工作波长.向光参量振荡器的谐振腔注入连续波的种子激光,通过“Ramp-Hold-Fire”技术,锁定OPO(Optical Parametric Oscillator) 谐振腔的腔长.该激光发射机具有高的光频率稳定性(30 MHz/rms)、窄的线宽(傅立叶转换限)、高的脉冲能量(≥45 mJ)等性能,能够在工作期间保持稳定.发射机系统以单纵模式工作,使得差分吸收激光雷达对后向散射光信号的窄带探测成为可能.因而此类系统具有精确探测大气压力的发展潜力.
大气压力 差分吸收激光雷达 光参量振荡器/光参量放大器 注入锁定 pressure measurement differential absorption lidar parametric oscillators and amplifiers injection-locked 
红外与毫米波学报
2019, 38(4): 04451
作者单位
摘要
1 中国科学院上海技术物理研究所空间主动光电技术重点实验室, 上海 200083
2 中国科学院国家天文台月球与深空探测重点实验室, 北京 100101
3 国防科技大学脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
4 中国科学院大学, 北京 100049
火星大气风速廓线探测对研究火星大气环境具有重要意义,基于马赫-曾德尔干涉仪的多普勒测风激光雷达相对于一般的相干/非相干多普勒测风激光雷达更适合于火星地基探测。为使马赫-曾德尔干涉仪对激光雷达中望远镜接收到的大视场角回波光信号进行频移检测,需要对马赫-曾德尔干涉仪进行视场展宽。对马赫-曾德尔干涉仪中棱镜式视场展宽技术与“猫眼”光学系统的视场展宽技术进行研究后发现,棱镜式视场展宽技术更具优势。设计并搭建了一套光程差为219 mm的马赫-曾德尔干涉仪,使用压电晶体扫描反射镜片的方式测量其对以11 mrad视场角入射的准平行光束的透射谱,得到干涉仪最大的干涉对比度为0.87,满足多普勒测风激光雷达的使用需求。结合地球大气环境分析了干涉仪干涉对比度随高度的变化,结果表明:虽然大光程差马赫-曾德尔干涉仪的干涉对比度在5 km以下低空大气中随高度增加有小幅下降,但仍可使用这种干涉仪进行大气风速探测。
遥感 激光雷达 多普勒测风 马赫-曾德尔干涉仪 视场展宽 
光学学报
2019, 39(6): 0628001
作者单位
摘要
1 中国科学院主动光电技术国防科技创新重点实验室, 中国科学院上海技术物理研究所, 上海 200083
2 中国科学院大学,北京 100049
水汽含量是大气最基本的物理参量之一, 大气水汽垂直分布结构对于大气过程的研究十分有意义。 差分吸收激光雷达可以昼夜获取高精度、 高距离分辨率的大气水汽垂直分布廓线, 是最有潜力的探测手段。 国际上已经发展出几种类型的差分吸收激光雷达, 对它们的发展路径做一梳理, 理清发展脉络, 具有有益的参考价值。 其中, 稍早时期水汽差分吸收激光雷达工作在4ν振动吸收带720~730 nm频域, 以Alexandrite为主流的激光器或者Nd∶YAG/ruby固体激光器泵浦的染料激光器作为发射光源, 光电倍增管仍然可以在这个波段担任探测器, 代表性的仪器是法国的机载LEANDRE Ⅱ。 此后发展的820 nm波段的水汽差分吸收激光雷达, 以钛宝石激光器或钛宝石光放大器为发射机, 以硅的雪崩二极管作为探测器, 紧跟前置放大和数据的AD采集器, 如德国Hohenheim大学的车载扫描激光雷达, 可以获得对流层300~4 000 m之间水汽两维或三维分布结构; 德国Institutfür Meteorologie und Klimaforschung所建立的差分吸收激光雷达可以探测3~12 km高度之间大气的水汽垂直分布。 720和820 nm波段水汽吸收截面较小, 更适合于地基或车载的对流层水汽廓线探测。 而水汽3ν振动谱935 nm区域吸收截面较大, 是为了空间探测大气对流层上、 平流层下相对干燥区域的水汽分布而准备的, 且可以安排多个探测波长, 和一个参考波长, 它们对水汽的吸收截面大小呈梯度分布, 以应对空间对地观测时不同高度大气水汽浓度的差别。 基于种子注入的光参量振荡器或Nd∶YGG全固态激光器的935 nm差分吸收激光雷达, 以德国Deutsches Zentrumfür Luft- und Raumfahrt的研究最为成功, 推动了欧洲空间局立项发展空间水汽差分吸收激光雷达WALES(Water Vapour Lidar Experiment in Space) , 测量从地球表面到平流层下、 高垂直分辨率和高精度水汽浓度分布。 机载多波长水汽差分吸收激光雷达1999年建立起来, 担当空间WALES任务的模拟器, 2006年完成了机载飞行试验。 以823~830 nm分布布拉格反射半导体激光器和半导体光放大器为核心、 采用雪崩二极管盖格光子计数技术的微脉冲差分吸收激光雷达, 是差分吸收激光雷达面向商业化、 可普及的方向迈出的重要一步, 目前已经发展到第四代产品。 发射机激光工作波长的长期稳定十分重要而棘手, 以窄带连续波种子激光注入脉冲激光器的谐振腔锁定其的腔长, 种子激光的波长以水汽的多通道光吸收池为参照标准, 或以高精度波长计为误差获取手段, 通过负反馈进行主动稳频; 其次, 需要仔细考虑大气对激光的后向散射光谱线型, 显然Rayleigh后向散射光的多普勒展宽与水汽吸收光谱线宽度可以比拟, 所以其吸收截面σon和σoff必需加以修正; 水汽的空间垂直分布梯度大, 因此差分吸收激光雷达应该实行分通道探测。
差分吸收激光雷达 水汽 光频稳定 瑞利多普勒展宽 Differential absorption lidar Water vapor Optical frequency stabilization Rayleigh Doppler-broadening 
光谱学与光谱分析
2019, 39(2): 340

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!