首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1012001--1)

二能级磁共振经典物理图像的理论和实验研究

Theoretical and Experimental Studies on Classic Physical Picture of Two-Level Magnetic Resonance

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

报道了时序控制的抽运-检测型铷原子磁力仪中二能级磁共振物理过程的经典理论和实验研究。该原子磁力仪的工作原理是线偏振光通过处于外磁场环境中被极化的原子介质后,由于铷原子对线偏振光中左、右圆偏振成分有不同的吸收率,光的偏振方向会发生与磁场相关的转动。采用二能级磁共振经典物理图像描述了射频场与原子作用的物理过程,采用旋转坐标系推导了相关表达式,并在实验室坐标系中给出了原子磁力仪输出信号的表达式,指出铷原子磁力仪的输出信号与原子磁矩在探测光方向上的投影矢量有关,并通过实验验证了理论分析结果。研究结论有助于加深对磁共振经典物理图像的理解及时序控制的抽运-检测型铷原子磁力仪的工作原理和参数设置。

Abstract

The theoretical and experimental researches on the classical physical picture of magnetic resonance in a rubidium atomic magnetometer under sequential control based on a pulsed pump-probe manner are reported in this paper. The basic principle of this atomic magnetometer is that the light polarization direction will produce rotation related to the magnetic field because of the different absorption and dispersion of the left and right circularly polarized components by the polarized rubidium atoms when the linearly polarized probe beam passes through the vapor cell. A classical physical picture of two-level magnetic resonance is adopted to describe the physical process of interaction between a radio frequency field and atoms, and the specific formula is derived in the rotating coordinate system. Meanwhile, the formula of the output signal acquired by the atomic magnetometer is obtained in the laboratory coordinate system. It is pointed out that the output signals acquired by the rubidium atomic magnetometer are related to the projection of macroscopic magnetization in the direction of the probe beam. The experimental results verify the theoretical analysis. The research results are helpful to deepen the understanding of the classical physical picture of magnetic resonance as well as the basic working principle and parameter setting of atomic magnetometers under sequential control.

广告组4 - 量子光学(超导单光子,符合计数器)
补充资料

中图分类号:O562

DOI:10.3788/CJL202047.1012001

所属栏目:量子光学

收稿日期:2020-04-13

修改稿日期:2020-05-25

网络出版日期:2020-10-01

作者单位    点击查看

杨宝:兰州空间技术物理研究所真空技术与物理重点实验室, 甘肃 兰州 730030
缪培贤:兰州空间技术物理研究所真空技术与物理重点实验室, 甘肃 兰州 730030
史彦超:兰州空间技术物理研究所真空技术与物理重点实验室, 甘肃 兰州 730030
冯浩:兰州空间技术物理研究所真空技术与物理重点实验室, 甘肃 兰州 730030
张金海:兰州空间技术物理研究所真空技术与物理重点实验室, 甘肃 兰州 730030
崔敬忠:兰州空间技术物理研究所真空技术与物理重点实验室, 甘肃 兰州 730030
刘志栋:兰州空间技术物理研究所真空技术与物理重点实验室, 甘肃 兰州 730030

联系人作者:缪培贤(miaopeixian@163.com)

【1】Wan S A, Sun X G, Zheng X, et al. Prospective development of nuclear magnetic resonance gyroscope [J]. Navigation Positioning &Timing. 2017, 4(1): 7-13.
万双爱, 孙晓光, 郑辛, 等. 核磁共振陀螺技术发展展望 [J]. 导航定位与授时. 2017, 4(1): 7-13.

【2】Donley E A, Long J L, Liebisch T C, et al. Nuclear quadrupole resonances in compact vapor cells: The crossover between the NMR and the nuclear quadrupole resonance interaction regimes [J]. Physical Review A. 2009, 79(1): 013420.

【3】Eklund E J. Microgyroscope based on spin-polarized nuclei [D]. Irvine: University of California Irvine. 2008, 27-40.

【4】Kornack T W, Ghosh R, Romalis M V. Nuclear spin gyroscope based on an atomic comagnetometer [J]. Physical Review Letters. 2005, 95(23): 230801.

【5】Ding Z C, Yuan J, Wang Z G, et al. Optically pumped rubidium atomic magnetometer with elliptically polarized light [J]. Optik. 2016, 127(13): 5270-5273.

【6】Miao P X, Yang S Y, Wang J X, et al. Rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation [J]. Acta Physica Sinica. 2017, 66(16): 160701.
缪培贤, 杨世宇, 王剑祥, 等. 抽运-检测型非线性磁光旋转铷原子磁力仪的研究 [J]. 物理学报. 2017, 66(16): 160701.

【7】Li H, Jiang M, Zhu Z N, et al. Calibration of magnetic field measurement capability of rubidium-xenon vapor cell atomic magnetometer [J]. Acta Physica Sinica. 2019, 68(16): 160701.
李辉, 江敏, 朱振南, 等. 铷-氙气室原子磁力仪系统磁场测量能力的标定 [J]. 物理学报. 2019, 68(16): 160701.

【8】Gu Y, Shi R Y, Wang Y H. Study on sensitivity-related parameters of distributed feedback laser-pumped cesium atomic magnetometer [J]. Acta Physica Sinica. 2014, 63(11): 110701.
顾源, 石荣晔, 王延辉. 分布式反馈激光抽运铯磁力仪灵敏度相关参数研究 [J]. 物理学报. 2014, 63(11): 110701.

【9】Wang Z G, Luo H, Fan Z F, et al. Research on an pump-probe rubidium magnetometer [J]. Acta Physica Sinica. 2016, 65(21): 210702.
汪之国, 罗晖, 樊振方, 等. 极化检测型铷原子磁力仪的研究 [J]. 物理学报. 2016, 65(21): 210702.

【10】Bloch F. Nuclear induction [J]. Physical Review. 1946, 70(7/8): 460.

【11】Rabi I I, Ramsey N F, Schwinger J. Use of rotating coordinates in magnetic resonance problems [J]. Reviews of Modern Physics. 1954, 26(2): 167-171.

【12】Wang Y Q, Wang Q J, Fu J S, et al. The theory of frequency standards[M]. Beijing: Science Press, 1986, 168-173.
王义遒, 王庆吉, 傅济时, 等. 量子频标原理[M]. 北京: 科学出版社, 1986, 168-173.

【13】Miao P X, Zheng W Q, Yang S Y, et al. Wide-range and self-locking atomic magnetometer based on free spin precession [J]. Journal of the Optical Society of America B. 2019, 36(4): 819-828.

【14】Ben-Kish A, Romalis M V. Dead-zone-free atomic magnetometry with simultaneous excitation of orientation and alignment resonances [J]. Physical Review Letters. 2010, 105(19): 193601.

【15】Huang S J, Zhang G Y, Hu Z H, et al. Human magnetoencephalography measurement by highly sensitive SERF atomic magnetometer [J]. Chinese Journal of Lasers. 2018, 45(12): 1204006.
黄圣洁, 张桂迎, 胡正珲, 等. 利用高灵敏的无自旋交换弛豫原子磁力仪实现脑磁测量 [J]. 中国激光. 2018, 45(12): 1204006.

【16】Momeen U M, Rangarajan G, Natarajan V. Transient response of nonlinear magneto-optic rotation in a paraffin-coated Rb vapor cell [J]. Physical Review A. 2010, 81(1): 013413.

【17】Grewal R S, Pustelny S, Rybak A, et al. Transient dynamics of a nonlinear magneto-optical rotation [J]. Physical Review A. 2018, 97(4): 043832.

【18】Jin G, Xu Y, Wang Z. Transient evolution of optical magnetic resonance in rubidium vapor [J]. Optics Express. 2019, 27(5): 7087-7098.

【19】Ding Z C, Li Y Y, Wang Z G, et al. Research of rubidium atomic magnetometer based on faraday rotation detection [J]. Chinese Journal of Lasers. 2015, 42(4): 0408003.
丁志超, 李莹颖, 汪之国, 等. 基于法拉第旋转检测的铷原子磁力仪研究 [J]. 中国激光. 2015, 42(4): 0408003.

【20】Acosta V, Ledbetter M P, Rochester S M, et al. Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range [J]. Physical Review A. 2006, 73(5): 053404.

【21】Ke H L, Miao P X, Yang S Y, et al. Temperature dependent relaxation lifetime T1, T2 measurements of the spin-polarized 87Rb atoms [J]. Optik. 2019, 180: 517-525.

【22】Liu Z J, Wang Z J, Wu C P. Transient process of RL series circuit under sinusoidal excitation [J]. Laboratory Science. 2017, 20(1): 1-3.
刘泽军, 王之坚, 吴传平. 正弦激励下RL串联电路的暂态过程 [J]. 实验室科学. 2017, 20(1): 1-3.

引用该论文

Yang Bao,Miao Peixian,Shi Yanchao,Feng Hao,Zhang Jinhai,Cui Jingzhong,Liu Zhidong. Theoretical and Experimental Studies on Classic Physical Picture of Two-Level Magnetic Resonance[J]. Chinese Journal of Lasers, 2020, 47(10): 1012001

杨宝,缪培贤,史彦超,冯浩,张金海,崔敬忠,刘志栋. 二能级磁共振经典物理图像的理论和实验研究[J]. 中国激光, 2020, 47(10): 1012001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF