作者单位
摘要
上海理工大学 光电信息与计算机工程学院,上海 200093
准确地探测和测量磁场,特别是极弱磁场(nT级以下),对理解物理世界可以起到更好的辅助作用。随着量子传感、信息、仪器仪表等技术的发展,原子磁场测量技术成为新一代超高灵敏磁场测量技术的发展方向。综述了原子磁强计中信号测量、调制方法、研究进展、设计方案以及实际应用的情况。首先介绍了近年来国内外原子磁强计的研究现状;其次阐述了全光法原子磁强计的基本原理;接着详细讲解了弱磁信号检测原理,并对不同的调制方法进行了比较;最后对弱磁信号高灵敏度的检测在今后的改进方向、应用领域和所面临的挑战进行了展望。
全光法 弱磁检测 原子磁强计 all-optical method weak magnetic detection atomic magnetometer 
光学仪器
2024, 46(1): 70
作者单位
摘要
电子科技大学光电科学与工程学院电子薄膜与集成器件国家重点实验室,四川 成都 610054
报道了一种基于交叉偏置磁场的单光束单调制三轴原子磁力仪。基于Bloch方程研究了单光束泵浦探测结构实现三轴磁场检测的理论,提出使用交叉偏置磁场来旋转原子自旋极化方向实现三轴磁场探测的方案,并通过实验进行了验证。仅采用单一调制磁场,在抑制低频噪声的前提下避免了磁场串扰问题。实验结果表明:在零磁场环境下,系统对X轴方向待测磁场的响应带宽为90 Hz,系统灵敏度为21 fT/(Hz1/2);在Z轴方向施加34 nT的偏置磁场时,系统对Y轴方向待测磁场的响应带宽为130 Hz,系统灵敏度为26 fT/(Hz1/2);在Y轴方向施加38 nT的偏置磁场时,系统对Z轴方向待测磁场的响应带宽为128 Hz,系统灵敏度为29 fT/(Hz1/2)。该三轴原子磁力仪体积小、结构简单且制作成本低,有望应用于生物医疗等领域。
原子磁力仪 三轴磁场 灵敏度 无自旋交换弛豫 弱磁检测 
激光与光电子学进展
2024, 61(5): 0512005
史镕瑞 1雷程 1,*梁庭 1,**王涛龙 1[ ... ]陈国锋 2
作者单位
摘要
1 中北大学动态测试技术国家重点实验室,山西 太原 030051
2 内蒙古动力机械研究所,内蒙古 呼和浩特 010000
原子磁强计以其高灵敏度和成本低等优势受到了越来越多的关注,如今,进一步提高原子磁强计的芯片集成度已成为主要趋势,因为它有利于生物磁性测量与成像。但是,目前实现原子磁强计小型化的主要障碍是微加工原子气室的光学元件分立。鉴于此,笔者提出一种基于新兴超表面的超紧凑片上原子气室方案,该方案将超表面与各向异性腐蚀的单晶硅相结合,在保证高灵敏度的同时提高了原子气室的集成度。该方案能够对圆偏振入射光束进行光路操纵,效率可达到80%。超表面采用厚度为500 nm的硅设计而成,可以通过基本的微加工工艺直接在原子气室上制造。所设计的新型原子气室具有集成度高、可大批量制造的优点,为未来生物磁性传感系统的发展提供了参考。
表面光学 超表面 异常折射 原子气室 原子磁强计 光路集成 
中国激光
2024, 51(2): 0213001
吴丽珍 1,2祝孝杰 1,2蒋双辉 1,2田原 1[ ... ]顾思洪 1
作者单位
摘要
1 中国科学院精密测量科学与技术创新研究院原子频标重点实验室,湖北 武汉 430074
2 中国科学院大学物理学院,北京 100049
要实现微型光学原子磁强计需要精确测定气室温度和实现高精度气室温控。提出了一种无温度传感器的气室温控方案。该方案首先探测激光输出功率,采用激光功率伺服控制激光器的注入电流以锁定光功率;然后探测原子吸收光谱,利用同步调制解调技术将其转变成激光频率鉴频信号,采用激光频率伺服控制激光器温度,将激光频率锁定在吸收谱线中心;最后利用原子吸收光谱中心信号幅度来测量气室温度,从而实现气室温控。采用本方案实现了气室温控,温控效果与采用热敏电阻测温所实现的气室温控效果相当,为实现微型光学原子磁强计气室温控提供了一种备选方案。
激光光学 微型光学原子磁强计 气室温控 原子吸收谱线 激光稳频 
中国激光
2023, 50(13): 1301003
作者单位
摘要
兰州空间技术物理研究所 真空技术与物理重点实验室,甘肃兰州730000
阐述了利用抽运-检测型原子磁力仪研制的磁场旋转调制法矢量原子磁力仪的工作原理、系统组成以及对旋转磁场的技术要求,根据该矢量原子磁力仪对旋转磁场的技术要求,提出了一种高性能旋转磁场产生装置。该装置通过DDS相位同步技术实现了正弦信号间相位差的补偿和精密调控,相位调控精度的理论设计值为0.022°;建立相应的电路模型,通过仿真分析以及电路模块间相互耦合关系的研究,完成了基于多模块间协同控制的电流调整模块设计,实现了线圈驱动电路电流的精密控制和调整。当旋转磁场强度为500 nT时,对应的磁场强度调整精度优于5 nT。以上设计使旋转磁场产生装置具备了旋转磁场强度、轨迹以及方向精密控制和调整的功能,经测试该装置的各项技术指标完全满足矢量原子磁力仪的技术要求,为矢量原子磁力仪研制以及技术研究奠定了技术基础。该旋转磁场产生装置在冶金、生物科学以及相关基础物理研究中也有重要的应用价值。
矢量原子磁力仪 旋转磁场产生装置 磁场精密调控 DDS相位同步 vector atomic magnetometer rotating magnetic field generator precise regulation of magnetic field DDS phase synchronization 
光学 精密工程
2022, 30(7): 780
作者单位
摘要
上海理工大学 光电信息与计算机工程学院,上海 200093
无自旋交换弛豫(SERF)原子磁强计是一种超高灵敏度磁强计,其小型化的研究对磁强计应用至关重要。其中,光路布局是制约其尺寸与灵敏度的关键因素。设计了一种单光束小型化原子磁强计,该磁强计为圆柱体,底面圆直径为21.2 mm,高为40.5 mm,并对其进行了热仿真实验。实验表明,该设计结构合理,且易于进行多通道测量,在脑磁图、心磁图等生物磁场测量领域具有实际应用价值。
光学原子磁强计 无自旋交换弛豫 单光束 弱磁测量 optical atomic magnetometer spin-exchange relaxation free single-beam weak magnetic measurement 
光学仪器
2022, 44(1): 55
赵俊祥 1,2,*左冠华 1,2李静 3张玉驰 3[ ... ]张天才 1,2
作者单位
摘要
1 山西大学光电研究所, 量子光学与光量子器件国家重点实验室 山西 太原 030006
2 山西大学极端光学协同创新中心, 山西 太原 030006
3 山西大学物理电子工程学院, 山西 太原 030006
谐振腔通过增加光与原子相互作用的长度而增大探测光偏转角, 大大增强了原子磁强计的灵敏度。我们基于磁光旋转的铯原子磁强计, 在理论与实验上研究了磁场测量灵敏度的腔增强因子与腔镜反射率的关系, 得到在一定原子气室损耗条件下获得最优磁测灵敏度的最佳腔镜反射率。利用平凹驻波腔, 在特定的腔镜反射率, 原子气室对光功率的损耗分别为9.5%和8.5%, 对应的腔逃逸效率为38%和41%, 腔对磁场灵敏度的增强因子为4.4和5.1; 在保持光与原子相互作用强度的情况下, 随着原子气室对光场损耗的降低, 磁场灵敏度进一步增强, 腔增强效果更显著。
铯原子磁强计 腔增强 偏转角 逃逸效率 Cesium atomic magnetometer cavity enhancement rotation angle escape efficiency 
量子光学学报
2021, 27(3): 192
作者单位
摘要
上海理工大学 光电信息与计算机工程学院,上海 200093
无自旋交换弛豫(SERF)原子磁强计是一种灵敏度非常高的磁强计,而剩余磁场强度是影响SERF原子磁强计灵敏度的主要因素之一。为此,提出了一种SERF原子磁强计三轴磁场顺序补偿方法,该方法将剩磁范围分为三个部分,每个部分对应不同的补偿方式,并且使用软件对顺序补偿的整个过程进行了仿真实验。实验表明,该方法可以不受补偿前原始剩磁大小的影响,更具有普适性。
光学原子磁强计 泵浦光 顺序补偿 三角调制 正弦调制 optical atomic magnetometer pump light sequential compensation triangular modulation sinusoidal modulation. 
光学仪器
2021, 43(4): 47
作者单位
摘要
华东师范大学 物理与电子科学学院,上海 闵行 200241
原子磁力计作为弱磁测量的理想方式,其小型化非常重要。本文搭建体积仅为29 cm×42 cm×42 cm的小型半导体激光器,激光器的最大光功率为117 mW,激光功率12 h慢漂06%,频率慢漂为每24 h 28 MHz。将其嵌入到原子磁力计系统中,用于减小原子磁力计的体积。实验测量结果表明,小型激光器的频率慢漂和功率慢漂对磁力计影响较小,在10~300 Hz范围内,磁场测量的灵敏度最高能达到10 fT/Hz,满足高灵敏度磁场测量的需求。我们的工作为微型磁力计实用化提供了参考。
磁场测量 原子磁力计 半导体激光器 magnetic field measurement atomic magnetometer small semiconductor laser 
量子光学学报
2020, 26(3): 227
作者单位
摘要
电子科技大学光电科学与工程学院电子薄膜与集成器件国家重点实验室, 四川 成都 610054
磁场作为磁性物质的基本特性之一,备受人们关注,在**、医疗、工业等领域都有着广泛的应用。对高灵敏度微型光学原子磁力仪的基本原理、发展进程和应用前景进行了梳理。阐述了微型光学原子磁力仪的工作机理及系统组成,论述了原子气室制作方法及优化方法、原子气室加热方法、磁场信号检测等关键技术的发展历程,对高灵敏度微型光学原子磁力仪的最新研究进展进行综述,并对微型光学原子磁力仪的应用前景进行了展望。
原子与分子物理学 光学原子磁力仪 塞曼效应 微型化 高灵敏 磁场探测 
激光与光电子学进展
2020, 57(23): 230002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!