Author Affiliations
Abstract
1 State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
2 Centre for Photonic Devices and Sensors, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
This Letter describes an approach to encode complex-amplitude light waves with spatiotemporal double-phase holograms (DPHs) for overcoming the limit of the space-bandwidth product (SBP) delivered by existing methods. To construct DPHs, two spatially macro-pixel encoded phase components are employed in the SBP-preserved resampling of complex holograms. Four generated sub-DPHs are displayed sequentially in time for high-quality holographic image reconstruction without reducing the image size or discarding any image terms when the DPHs are interweaved. The reconstructed holographic images contain more details and less speckle noise, with their signal-to-noise ratio and structure similarity index being improved by 14.64% and 78.79%, respectively.
computer generated holography complex-amplitude hologram double phase hologram holographic display 
Chinese Optics Letters
2020, 18(10): 100901
Author Affiliations
Abstract
1 Graduate School of Integrated Arts and Sciences, Kochi University, Kochi 780-8520, Japan
2 Research and Education Faculty, Kochi University, Kochi 780-8520, Japan
3 National Astronomical Observatory of Japan, Mitaka 181-8588, Japan
4 Graduate School of Engineering, Chiba University, Inage-ku 263-8522, Japan
Computationally, the calculation of computer-generated holograms is extremely expensive, and the image quality deteriorates when reconstructing three-dimensional (3D) holographic video from a point-cloud model comprising a huge number of object points. To solve these problems, we implement herein a spatiotemporal division multiplexing method on a cluster system with 13 GPUs connected by a gigabit Ethernet network. A performance evaluation indicates that the proposed method can realize a real-time holographic video of a 3D object comprising ~1,200,000 object points. These results demonstrate a clear 3D holographic video at 32.7 frames per second reconstructed from a 3D object comprising 1,064,462 object points.
real-time electroholography multiple-graphics processing unit cluster graphics processing unit spatiotemporal division multiplexing electroholography 
Chinese Optics Letters
2020, 18(7): 070901
Author Affiliations
Abstract
1 Institute of Micromechanics and Photonics, Warsaw University of Technology, 02-525 Warsaw, Poland
2 Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 00-665 Warsaw, Poland
3 Geola Digital uab., Vilnius 03227, Lietuva
In this Letter, a method for shape visualization of small objects (microscopic) in the form of a hologram is presented. It consists of a standard optical set-up for small object registration (i.e., stereoscopic or biological microscope). The focus stacking technique is used to obtain a series of images with increased depth of field and on them a shape reconstruction procedure (structure from motion, SfM) is made. With use of a dense cloud of points, a sequence of parallax-related images suitable for Geola’s digital holographic printing is generated. The holographic printer produces single-parallax holographic (full three-dimensional) images of real or virtual objects.
digital holography three-dimensional image acquisition photography 
Chinese Optics Letters
2020, 18(6): 060901
Author Affiliations
Abstract
1 Graduate School of Integrated Arts and Sciences, Kochi University, Kochi, Kochi 780-8520, Japan
2 Research and Education Faculty, Kochi University, Kochi, Kochi 780-8520, Japan
3 National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
4 Graduate School of Engineering, Chiba University, Chiba, Chiba 263-8522, Japan
Systems containing multiple graphics-processing-unit (GPU) clusters are difficult to use for real-time electroholography when using only a single spatial light modulator because the transfer of the computer-generated hologram data between the GPUs is bottlenecked. To overcome this bottleneck, we propose a rapid GPU packing scheme that significantly reduces the volume of the required data transfer. The proposed method uses a multi-GPU cluster system connected with a cost-effective gigabit Ethernet network. In tests, we achieved real-time electroholography of a three-dimensional (3D) video presenting a point-cloud 3D object made up of approximately 200,000 points.
real-time electroholography multiple-graphics processing unit cluster graphics processing unit gigabit Ethernet 
Chinese Optics Letters
2020, 18(2): 020902
Author Affiliations
Abstract
1 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China
Lens-less Fourier-transform holography has been actively studied because of its simple optical structure and its single-shot recording. However, a low-contrast interferogram between the reference and object waves limits its signal to noise ratio. Here, multi-reference lens-less Fourier-transform holography with a Greek-ladder sieve array is proposed in the experiment and demonstrated effectively to improve the signal to noise ratio. The key technique in our proposed method is a Greek-ladder sieve array, which acts as not only a wave-front modulator but also a beam splitter. With advantages of the common path, single shot, and no need for a lens, this system has enormous potential in imaging and especially in extreme ultraviolet and soft X-ray holography.
digital holography diffractive lens X-ray imaging 
Chinese Optics Letters
2020, 18(2): 020901
Author Affiliations
Abstract
1 Faculty of Science, Kochi University, Kochi 780-8520, Japan
2 Research and Education Faculty, Kochi University, Kochi 780-8520, Japan
3 Graduate School of Integrated Arts and Sciences, Kochi University, Kochi 780-8520, Japan
4 Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka-shi 181-8588, Japan
5 Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
We demonstrate real-time three-dimensional (3D) color video using a color electroholographic system with a cluster of multiple-graphics processing units (multi-GPU) and three spatial light modulators (SLMs) corresponding respectively to red, green, and blue (RGB)-colored reconstructing lights. The multi-GPU cluster has a computer-generated hologram (CGH) display node containing a GPU, for displaying calculated CGHs on SLMs, and four CGH calculation nodes using 12 GPUs. The GPUs in the CGH calculation node generate CGHs corresponding to RGB reconstructing lights in a 3D color video using pipeline processing. Real-time color electroholography was realized for a 3D color object comprising approximately 21,000 points per color.
color electroholography real-time electroholography multiple-graphics processing unit cluster graphics processing unit 
Chinese Optics Letters
2020, 18(1): 010901
Author Affiliations
Abstract
Biophotonics Laboratory, University of Michigan—Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
We propose a resolution enhancement method for a lensless in-line holographic microscope (LIHM) by combining the hologram segmentation and pixel super-resolution (PSR) techniques. Our method is suitable for imaging specific target objects in samples, where the in-line hologram is disturbed by other objects in the samples. The resolution-enhancement capability of our method was proved by numerical simulations and imaging experiments while using a standard resolution target in a two-layer setup. We also applied our LIHM system to image the sample of living algae Euglena gracilis in water solution for further demonstration.
090.1995 Digital holography 170.3880 Medical and biological imaging 
Chinese Optics Letters
2019, 17(11): 110901
Author Affiliations
Abstract
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
A novel see-through virtual retina display (VRD) system is proposed in this Letter. An optical fiber projector is used as the thin-light-beam source, which is modified from a laser scan projector by separating the laser sources and the scan mechanical structure. A synthetic aperture method is proposed for simple, low-cost fabrication of a volume holographic lens with large numerical aperture. These two key performance-enhanced elements are integrated into a lightweight and ordinary-glasses-like optical see-through VRD system. The proposed VRD system achieves a weight of 30 g and a diagonal field of view of 60°.
090.2820 Heads-up displays 090.2890 Holographic optical elements 170.5755 Retina scanning 110.2350 Fiber optics imaging 
Chinese Optics Letters
2019, 17(9): 090901
Author Affiliations
Abstract
1 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
A method is proposed to optimize the recording structure of the photorefractive volume grating to compensate high spatial frequency in the distorted wavefront by optical phase conjugation. Based on the coupled-wave equation, the diffraction efficiency of the recorded grating formed by the scattered beams in different recording structures is simulated. The theoretical results show that the recorded modulations with high spatial frequency can be significantly improved in the small recording angle. In the experiment, three recording structures with the recording angles of 7.5°, 30°, and 45° are chosen to verify the compensation effect. Compared with the reconstructed image in the large recording angle of 45°, the signal to noise ratio of the image recorded at 7.5° increases to 3.2 times of that at 45°.
090.7330 Volume gratings 110.0113 Imaging through turbid media 070.5040 Phase conjugation 
Chinese Optics Letters
2019, 17(7): 070901
Yu Zheng 1,2Fangwen Sun 1,2,*
Author Affiliations
Abstract
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Forward-scattering-light interferometry has become the most commonly used position detection scheme in optical levitation systems. Usually, three-set detectors are required to obtain the three-dimensional motion information. Here, we simplify the three-set detectors to one set by inserting a Dove prism. We investigate the role of a Dove prism in the position measurement process with an optical levitation system in vacuum. The relationship between the power spectral density and the rotation angle of a Dove prism is experimentally demonstrated and analyzed. This work shows that the Dove prism can greatly reduce the complexity of the experimental setup, which can be applied to compact optical levitation systems for studies in metrology, quantum physics, and biology.
090.1970 Diffractive optics 140.7010 Laser trapping 
Chinese Optics Letters
2019, 17(6): 060901

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!