Author Affiliations
Abstract
1 State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
2 Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
Brillouin microscopy, which maps the elastic modulus from the frequency shift of scattered light, has evolved to a faster speed for the investigation of rapid biomechanical changes. Impulsive stimulated Brillouin scattering (ISBS) spectroscopy has the potential to speed up measurement through the resonant amplification interaction from pulsed excitation and time-domain continuous detection. However, significant progress has not been achieved due to the limitation in signal-to-noise ratio (SNR) and the corresponding need for excessive averaging to maintain high spectral precision. Moreover, the limited spatial resolution also hinders its application in mechanical imaging. Here, by scrutinizing the SNR model, we design a high-speed ISBS microscope through multi-parameter optimization including phase, reference power, and acquisition time. Leveraging this, with the further assistance of the Matrix Pencil method for data processing, three-dimensional mechanical images are mapped under multiple contrast mechanisms for a millimeter-scale polydimethylsiloxane pattern immersed in methanol, enabling the identification of these two transparent materials without any contact or labeling. Our experimental results demonstrate the capability to maintain high spectral precision and resolution at a sub-millisecond integration time for one pixel. With a two-order improvement in the speed and a tenfold improvement in the spatial resolution over the state-of-the-art systems, this method makes it possible for ISBS microscopes to sensitively investigate rapid mechanical changes in time and space.
Photonics Research
2024, 12(4): 730
Baoqi Shi 1,2†Yi-Han Luo 2,3†Wei Sun 2Yue Hu 2,3[ ... ]Junqiu Liu 2,4,*
Author Affiliations
Abstract
1 Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
2 International Quantum Academy, Shenzhen 518048, China
3 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
4 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
5 e-mail: atwang@ustc.edu.cn
Tunable lasers, with the ability to continuously vary their emission wavelengths, have found widespread applications across various fields such as biomedical imaging, coherent ranging, optical communications, and spectroscopy. In these applications, a wide chirp range is advantageous for large spectral coverage and high frequency resolution. Besides, the frequency accuracy and precision also depend critically on the chirp linearity of the laser. While extensive efforts have been made on the development of many kinds of frequency-agile, widely tunable, narrow-linewidth lasers, wideband yet precise methods to characterize and linearize laser chirp dynamics are also demanded. Here we present an approach to characterize laser chirp dynamics using an optical frequency comb. The instantaneous laser frequency is tracked over terahertz bandwidth at 1 MHz intervals. Using this approach we calibrate the chirp performance of 12 tunable lasers from Toptica, Santec, New Focus, EXFO, and NKT that are commonly used in fiber optics and integrated photonics. In addition, with acquired knowledge of laser chirp dynamics, we demonstrate a simple frequency-linearization scheme that enables coherent ranging without any optical or electronic linearization unit. Our approach not only presents novel wideband, high-resolution laser spectroscopy, but is also critical for sensing applications with ever-increasing requirements on performance.
Photonics Research
2024, 12(4): 663
Author Affiliations
Abstract
1 Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tianjin 300072, China
2 School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
The dynamics of water within a nanopool of a reverse micelle is heavily affected by the amphiphilic interface. In this work, the terahertz (THz) spectra of cyclohexane/Igepal/water nonionic reverse micelle mixture are measured by THz time-domain spectroscopy and analyzed with two Debye models and complex permittivity of background with volume ratios. Based on the fitted parameters of bulk and fast water, the molar concentration of all kinds of water molecules and hydration water molecule number per Igepal molecule are calculated. We find that slow hydration water has the highest proportion in water when the radius parameter ω0<10, while bulk water becomes the main component when ω010. The feature radius ratio of nonhydrated and hydrated water to total water nanopool is roughly obtained from 0.39 to 0.85 with increasing ω0.
reverse micelle water dynamics THz spectroscopy 
Chinese Optics Letters
2024, 22(1): 013001
Author Affiliations
Abstract
1 Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
2 School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
The distribution of metal nanoparticles on the surface of a surface enhancement Raman scattering (SERS)-active substrate plays a prominent part in not only the enhancement of Raman vibration signal, but also the spectrum uniformity. Here, a facile method to fabricate SERS substrates with excellent homogeneity and low cost was proposed, in which a lyotropic liquid crystal soft template was introduced for the coordinated growth of the silver nanoflowers in the process of electrochemistry deposition. Simulation was carried out to illustrate the dominated influence of the distance of electrodes on the deposited nanoparticle number. Two kinds of conductive materials, silver plate and indium tin oxide (ITO) glass, were chosen as the anode, while the cathode was fixed as ITO glass. The simulated conjecture on the effect of electrode flatness on the uniformity of deposited nanoparticles in silver is experimentally proved. More importantly, it was demonstrated that with a relatively smooth and flat ITO glass anode, a SERS substrate featuring higher spectrum uniformity could be achieved. This work is of great significance to the actual applications of the SERS substrate for quantitative detection with high sensitivity.
SERS Raman spectrum surface flatness nanoparticle distribution electrodeposition 
Chinese Optics Letters
2023, 21(11): 113001
Author Affiliations
Abstract
1 School of Physics, Harbin Institute of Technology, Harbin 150001, China
2 Photonics Research Institute, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China
3 National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
Laser absorption spectroscopy (LAS) has been widely used for unambiguous detection and accurate quantification of gas species in a diverse range of fields. However, up-to-date LAS-based gas sensors still face challenges in applications where gas concentrations change in a wide range, since it is extremely difficult to balance spectral analysis strategies for different optical thicknesses. Here we present laser vector spectroscopy that combines absorption spectroscopy with dispersion spectroscopy, simultaneously taking advantage of the former’s high sensitivity in the low-concentration region and the latter’s high linearity in the high-concentration region. In the proof-of-concept demonstration of acetylene measurement, it achieves a linear dynamic range of 6×107 (R2>0.9999), which surpasses all other state-of-the-art LAS techniques by more than an order of magnitude, with the capability of highly accurate quantification retained. The proposed laser spectroscopic method paves a novel way of developing large-dynamic-range gas sensors for environmental, medical, and industrial applications.
Photonics Research
2023, 11(10): 1687
Author Affiliations
Abstract
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
2 e-mail: clgu@lps.ecnu.edu.cn
3 e-mail: wxli@phy.ecnu.edu.cn
Dual-comb spectroscopy (DCS) has revolutionized numerous spectroscopic applications due to its high spectral resolution and fast measurement speed. Substantial efforts have been made to obtain a coherent dual-comb source at various spectral regions through nonlinear frequency conversion, where the preservation of coherence has become a problem of great importance. In this study, we report the generation of coherent dual-comb sources covering from the ultraviolet to mid-infrared region based on high-order harmonic generation. Driven by high-repetition-rate femtosecond mid-infrared dual-comb pump pulses, up to ninth-order harmonic was generated from the ultraviolet to mid-infrared region using an aperiodically poled lithium niobate waveguide. To investigate the coherence property of the high-order harmonic generation, DCS was performed at every generated spectral region from 450 to 3600 nm. The measured dual-comb spectra with distinctive tooth-resolved structures show the well-preserved coherence without apparent degradation after the cascaded quadratic nonlinear processes. The subsequent methane absorption spectroscopy at multiple spectral regions of different harmonics was carried out to characterize the spectroscopic capability of the system. These results demonstrate the potential of our scheme to generate compact and coherent broadband optical frequency combs for simultaneous multi-target detections.
Photonics Research
2023, 11(7): 1373
Author Affiliations
Abstract
1 Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Department of Electrical Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3 Southwest Institute of Technical Physics, Chengdu 610041, China
This paper investigates the combination of laser-induced breakdown spectroscopy (LIBS) and deep convolutional neural networks (CNNs) to classify copper concentrate samples using pretrained CNN models through transfer learning. Four pretrained CNN models were compared. The LIBS profiles were augmented into 2D matrices. Three transfer learning methods were tried. All the models got a high classification accuracy of >92%, with the highest at 96.2% for VGG16. These results suggested that the knowledge learned from machine vision by the CNN models can accelerate the training process and reduce the risk of overfitting. The results showed that deep CNN and transfer learning have great potential for the classification of copper concentrates by portable LIBS.
laser-induced breakdown spectroscopy convolutional neural networks classification flotation concentrate transfer learning 
Chinese Optics Letters
2023, 21(4): 043001
Author Affiliations
Abstract
Department of Physics, Fudan University, Shanghai 200438, China
Measuring magnetic response from spin and current is of fundamental interest in condensed matter physics. Negatively charged nitrogen-vacancy (NV-) centers in diamond are emerging as a robust and versatile quantum sensor owing to their high sensitivity, nanometer-scale spatial resolution, and noninvasive operation with access to static and dynamic magnetic and electron transport properties. In this review, we discuss the rapidly growing interest in the implementation of NV- magnetometry to explore condensed matter physics, focusing on three topics: anti/ferromagnetic materials, superconductors, and metals/semimetals/semiconductors.
Photonics Research
2023, 11(3): 393
Author Affiliations
Abstract
Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084, China
Exploiting the time-resolving ability of ultrafast pulses, Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) stands out among the coherent Raman spectroscopic techniques for providing high-speed vibrational spectra with high spectral resolution, high Raman intensity, and immunity to nonresonant background. However, the impulsive stimulation nature of FT-CARS imposes heavy demands on the laser source and makes it inherently difficult to monitor high-frequency vibrations. Here, a novel FT-CARS strategy to our knowledge based on interpulse stimulation is proposed to provide more flexible measuring wavenumber region and lighten the requirement on ultrafast pulses. The mechanism of this technique is analyzed theoretically, and simulation is performed to show an orders-of-magnitude improvement of Raman intensity in the high-wavenumber region by the method. Experimentally, an ytterbium-doped fiber laser and photonic crystal fiber-based solitons are employed to provide two 100-fs pulses as the pump and Stokes, respectively, and to perform interpulse stimulation FT-CARS without sophisticated dispersion control devices. The high-wavenumber region and upper-part fingerprint region measurements are demonstrated as examples of flexible measurement. Combined with other rapid scanning techniques, such as resonant scanners or a dual-comb scheme, this interpulse stimulation FT-CARS promises to make the fascinating FT-CARS available for any desired wavenumber region, covering many more realistic scenarios for biomedical, pathological, and environmental research.
Photonics Research
2023, 11(2): 357
Author Affiliations
Abstract
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
In the field of absorption spectroscopy, the multipass cell (MPC) is one of the key elements. It has the advantages of simple structure, easy adjustment, and high spectral coverage, which is an effective way to improve the detection sensitivity of gas sensing systems such as tunable diode laser absorption spectroscopy. This invited paper summarizes the design theory and the research results of some mainstream types of MPCs based on two mirrors and more than two mirrors in recent years, and briefly introduces the application of some processed products. The design theory of modified ABCD matrix and vector reflection principle are explained in detail. Finally, trends in its development are predicted.
multipass cell tunable diode laser absorption spectroscopy gas sensing optical path length 
Chinese Optics Letters
2023, 21(3): 033001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!