Zhipeng Yu 1,2†Tianting Zhong 1,2†Huanhao Li 1,2Haoran Li 1,2[ ... ]Puxiang Lai 1,2,6,8,*
Author Affiliations
Abstract
1 Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
2 Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
3 Peng Cheng Laboratory, Shenzhen 518055, China
4 Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
5 Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
6 Photonics Research Institute, The Hong Kong Polytechnic University, Hong Kong SAR, China
7 e-mail: chao.lu@polyu.edu.hk
8 e-mail: puxiang.lai@polyu.edu.hk
Multimode fibers (MMFs) are a promising solution for high-throughput signal transmission in the time domain. However, crosstalk among different optical modes within the MMF scrambles input information and creates seemingly random speckle patterns at the output. To characterize this process, a transmission matrix (TM) can be used to relate input and output fields. Recent innovations use TMs to manipulate the output field by shaping the input wavefront for exciting advances in deep-brain imaging, neuron stimulation, quantum networks, and analog operators. However, these approaches consider input/output segments as independent, limiting their use for separate signal processing, such as logic operations. Our proposed method, which makes input/output segments as interdependent, adjusts the phase of corresponding output fields using phase bias maps superimposed on input segments. Coherent superposition enables signal logic operations through a 15-m-long MMF. In experiments, a single optical logic gate containing three basic logic functions and cascading multiple logic gates to handle binary operands is demonstrated. Bitwise operations are performed for multi-bit logic operations, and multiple optical logic gates are reconstructed simultaneously in a single logic gate with polarization multiplexing. The proposed method may open new avenues for long-range logic signal processing and transmission via MMFs.
Photonics Research
2024, 12(3): 587
Zhi-Dan Lei 1†Yi-Duo Xu 1†Cheng Lei 1,3Yan Zhao 1,2,4Du Wang 1,*
Author Affiliations
Abstract
1 The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
2 College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
3 e-mail: leicheng@whu.edu.cn
4 e-mail: yan2000@whu.edu.cn
Optical metasurfaces (OMs) offer unprecedented control over electromagnetic waves, enabling advanced optical multiplexing. The emergence of deep learning has opened new avenues for designing OMs. However, existing deep learning methods for OMs primarily focus on forward design, which limits their design capabilities, lacks global optimization, and relies on prior knowledge. Additionally, most OMs are static, with fixed functionalities once processed. To overcome these limitations, we propose an inverse design deep learning method for dynamic OMs. Our approach comprises a forward prediction network and an inverse retrieval network. The forward prediction network establishes a mapping between meta-unit structure parameters and reflectance spectra. The inverse retrieval network generates a library of meta-unit structure parameters based on target requirements, enabling end-to-end design of OMs. By incorporating the dynamic tunability of the phase change material Sb2Te3 with inverse design deep learning, we achieve the design and verification of dynamic multifunctional OMs. Our results demonstrate OMs with multiple information channels and encryption capabilities that can realize multiple physical field optical modulation functions. When Sb2Te3 is in the amorphous state, near-field nano-printing based on meta-unit amplitude modulation is achieved for X-polarized incident light, while holographic imaging based on meta-unit phase modulation is realized for circularly polarized light. In the crystalline state, the encrypted information remains secure even with the correct polarization input, achieving double encryption. This research points towards ultra-compact, high-capacity, and highly secure information storage approaches.
Photonics Research
2024, 12(1): 123
Xiaoyu Jin 1Jie Zhao 1,2,5,*Dayong Wang 1,2,6,*John J. Healy 3,4[ ... ]Shufeng Lin 1,2
Author Affiliations
Abstract
1 College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
2 Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Beijing 100124, China
3 Beijing-Dublin International College, Beijing University of Technology, Beijing 100124, China
4 School of Electrical and Electronic Engineering, College of Engineering and Architecture, University College Dublin, Belfield, Dublin 4, Ireland
5 e-mail: zhaojie@bjut.edu.cn
6 e-mail: wdyong@bjut.edu.cn
Diffraction tomography is a promising, quantitative, and nondestructive three-dimensional (3D) imaging method that enables us to obtain the complex refractive index distribution of a sample. The acquisition of the scattered fields under the different illumination angles is a key issue, where the complex scattered fields need to be retrieved. Presently, in order to develop terahertz (THz) diffraction tomography, the advanced acquisition of the scattered fields is desired. In this paper, a THz in-line digital holographic diffraction tomography (THz-IDHDT) is proposed with an extremely compact optical configuration and implemented for the first time, to the best of our knowledge. A learning-based phase retrieval algorithm by combining the physical model and the convolution neural networks, named the physics-enhanced deep neural network (PhysenNet), is applied to reconstruct the THz in-line digital hologram, and obtain the complex amplitude distribution of the sample with high fidelity. The advantages of the PhysenNet are that there is no need for pretraining by using a large set of labeled data, and it can also work for thick samples. Experimentally with a continuous-wave THz laser, the PhysenNet is first demonstrated by using the thin samples and exhibits superiority in terms of imaging quality. More importantly, with regard to the thick samples, PhysenNet still works well, and can offer 2D complex scattered fields for diffraction tomography. Furthermore, the 3D refractive index maps of two types of foam sphere samples are successfully reconstructed by the proposed method. For a single foam sphere, the relative error of the average refractive index value is only 0.17%, compared to the commercial THz time-domain spectroscopy system. This demonstrates the feasibility and high accuracy of the THz-IDHDT, and the idea can be applied to other wavebands as well.
Photonics Research
2023, 11(12): 2149
Author Affiliations
Abstract
1 College of Information Science Technology, Dalian Maritime University, Dalian 116026, China
2 China Academy of Space Technology, Beijing 100086, China
3 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
4 University of Chinese Academy of Sciences, Beijing 100049, China
5 e-mail: panan@opt.cn
Combining the synthetic aperture radar (SAR) with the optical phase recovery, Fourier ptychography (FP) can be a promising technique for high-resolution optical remote imaging. However, there are still two issues that need to be addressed. First, the multi-angle coherent model of FP would be destroyed by the diffuse object; whether it can improve the resolution or just suppress the speckle is unclear. Second, the imaging distance is in meter scale and the diameter of field of view (FOV) is around centimeter scale, which greatly limits the application. In this paper, the reasons for the limitation of distance and FOV are analyzed, which mainly lie in the illumination scheme. We report a spherical wave illumination scheme and its algorithm to obtain larger FOV and longer distance. A noise suppression algorithm is reported to improve the reconstruction quality. The theoretical interpretation of our system under random phase is given. It is confirmed that FP can improve the resolution to the theoretical limit of the virtual synthetic aperture rather than simply suppressing the speckle. A 10 m standoff distance experiment with a six-fold synthetic aperture up to 31 mm over an object of size 1 m×0.7 m is demonstrated.
Photonics Research
2023, 11(12): 2072
Author Affiliations
Abstract
Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
As an important three-dimensional (3D) display technology, computer-generated holograms (CGHs) have been facing challenges of computational efficiency and realism. The polygon-based method, as the mainstream CGH algorithm, has been widely studied and improved over the past 20 years. However, few comprehensive and high-speed methods have been proposed. In this study, we propose an analytical spectrum method based on the principle of spectral energy concentration, which can achieve a speedup of nearly 30 times and generate high-resolution (8K) holograms with low memory requirements. Based on the Phong illumination model and the sub-triangles method, we propose a shading rendering algorithm to achieve a very smooth and realistic reconstruction with only a small increase in computational effort. Benefiting from the idea of triangular subdivision and octree structures, the proposed original occlusion culling scheme can closely crop the overlapping areas with almost no additional overhead, thus rendering a 3D parallax sense. With this, we built a comprehensive high-speed rendering pipeline of polygon-based holograms capable of computing any complex 3D object. Numerical and optical reconstructions confirmed the generalizability of the pipeline.
Photonics Research
2023, 11(2): 313
Author Affiliations
Abstract
1 Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100191, China
3 Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
With the development of micro/nano fabrication technology, metasurface holography has emerged as a revolutionary technology for the manipulation of light with excellent performance. However, for applications of full-Stokes polarization encryption and time sequence holographic display, multiplexing strategies of metasurfaces with large bandwidths and simple operations still need to be developed. As one of the most popular schemes of multiplexing, polarization multiplexed metasurfaces have shown flexible recording abilities for both free-space beam and surface waves. Here, by using a dielectric metasurface equipped with double phase holograms, we have achieved flexible polarization multiplexed transformations from one full-Stokes space to another. The vectorial hologram is optimized by a hybrid genetic algorithm and digitalized with subwavelength modulated units. Based on a quantitative map and remarkable information capacity, time sequence holographic display and complex optical encryption are experimentally demonstrated by changing input/output polarization channels in real time. We believe our method will facilitate applications in smart compact devices of dynamic display, dynamic optical manipulation, optical encryption, anticounterfeiting, etc.
Photonics Research
2022, 10(4): 04001031
Yuxiang Jia 1,2Jiafu Wang 1,2,3,*Yajuan Han 1,2,4,*Ruichao Zhu 1,2[ ... ]Shaobo Qu 1,2
Author Affiliations
Abstract
1 Department of Basic Sciences, Air Force Engineering University, Xi’an 710051, China
2 Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Xi’an 710051, China
3 e-mail: wangjiafu1981@126.com
4 e-mail: mshyj_mail@126.com
Reciprocity is ubiquitous in antennas for receiving and radiating electromagnetic (EM) waves, i.e., if an antenna has good receiving performance at a given direction, it also has good radiation performance in that direction. Inspired by this, we propose a method of designing a quasi-ominibearing retro-reflective metagrating (RRMG) protected by the reciprocity of antennas. Based on the second-order mode around 15.0 GHz of a short-circuited structured patch antenna (SPA), incident transverse magnetic waves can be received, channeled into the coaxial lines, reflected by the shortened end, and finally re-radiated into free space with a reversed wave vector. RRMGs are contrived consisting of this identical SPA, with a grating constant allowing ±2nd-, ±1st-, and zeroth-order diffractions. Oblique incidence, plus the tilted nulls of the re-radiation pattern, can eliminate -1st, zeroth, +1st, and +2nd orders, and only the -2nd order is left to achieve retro-reflections. Prototypes were fabricated and measured. Simulated and measured results show that the RRMGs maintain only -2nd-order diffraction for incident angles 32.2°θi<90.0° in four quadrants, and that RRMGs can achieve quasi-omnibearing retro-reflections for θi=50.0°. The use of higher-order diffraction brings more degrees of freedom in manipulating EM waves, and this strategy can be readily extended to millimeter waves, THz wave, or even optical regimes.
Photonics Research
2022, 10(4): 04000843
Author Affiliations
Abstract
1 Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
2 Beijing Aerospace Automatic Control Institute, Beijing 100143, China
3 Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
4 Institute of Physics, Chinese Academy of Sciences, Beijing 100191, China
Metasurface holography is becoming a universal platform that has made a considerable impact on nanophotonics and information optics, due to its advantage of large capacity and multiple functionalities. Here, we propose a correlated triple amplitude and phase holographic encryption based on an all-dielectric metasurface. We develop an optimized holographic algorithm to obtain quantitatively correlated triple holograms, which can encrypt information in multiple wavelength and polarization channels. We apply the “static” and “dynamic” pixels in our design, respectively. Two kinds of isotropic square nanofins are selected, one functioning as a transmitter and the other functioning as a blocker counterintuitively at both working wavelengths, while another anisotropic rectangle nanofin can transmit or block light in co-polarization selectively, mimicking “dynamic” amplitude switches. Meanwhile, such “dynamic” nanofins can simultaneously function as a phase modulator in cross-polarization only at the transmission wavelength. That is, through smart design, different dielectric meta-atoms functioning as spectral filters as well as phase contributors can compositely achieve triple hybrid amplitude and phase holograms. Such strategy promises to be applied in compact large-capacity information storage, colorful holographic displays, optical encryption, multifunctional imaging devices, and so on.
Photonics Research
2022, 10(3): 03000678
Yaya Zhang 1†Jie Zhao 1,2†Dayong Wang 1,2†Yunxin Wang 1,2Lu Rong 1,2,*
Author Affiliations
Abstract
1 College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
2 Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Beijing 100124, China
With the development of continuous-wave terahertz (THz) sources and array detectors, the pursuit of high-fidelity real-time imaging is receiving significant attention within the THz community. Here, we report a real-time full-field THz phase imaging approach based on lensless Fourier-transform THz digital holography. A triangular interferometric layout is proposed based on an oblique illumination of 2.52 THz radiation, which is different from other lensless holographic configurations at other frequencies. A spherical reference beam is generated by a reflective parabolic mirror with minor propagation loss. The complex-valued images are reconstructed using a single inverse Fourier transform of the hologram without complex calculation of the diffraction propagation. The experimental result for a Siemens star validates the lateral resolution of 346 μm in the diagonal direction. Sub-pixel image registration and image stitching algorithms are applied to enlarge the area of the reconstructed images. The dehydration process of an aquatic plant leaf (Hottonia inflata) is monitored for the first time, to the best of our knowledge, at the THz band. Rapid variations in water content and morphology are measured with a time interval of 0.6 s and a total time of 5 min from a series of reconstructed amplitude and phase images, respectively. The proposed method has the potential to become a powerful tool to investigate spontaneous phenomena at the THz band.
Photonics Research
2022, 10(2): 02000323
Author Affiliations
Abstract
1 College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
2 Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Beijing 100124, China
Massive usage scenarios prompt the prosperity of terahertz refractive index (THz RI) measurement methods. However, they are very difficult in measuring the full-field dynamical RI distributions of either solid samples without a priori thickness or liquid samples. In this study, we propose total internal reflection THz digital holography and apply it for measuring RI distributions for both solid and liquid samples dynamically. An RI measurement model is established based on an attenuated total reflection prism with a pitching angle. The pitching angle and the field of view can be numerically calculated from the spectrogram of the off-axis Fresnel hologram, which solves the adjustment of the visually opaque prism irradiated by the invisible THz beam. Full-field RI distributions of the droplets of solid-state soy wax and distilled water are obtained and compared with THz time-domain spectroscopy. The evaporation of an ethanol solution droplet is recorded, and the variation of the RI distribution at the sample–prism interface is quantitatively visualized with a temporal resolution of 10 Hz. The proposed method greatly expands the sample range for THz RI measurements and provides unprecedented insight into investigating spontaneous and dynamic THz phenomena.
Photonics Research
2022, 10(2): 02000289

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!