Author Affiliations
Abstract
1 School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
2 Quanzhou San’an Integrated Circuit Co., Ltd., Quanzhou 362300, China
3 Eastern Institute of Technology, Ningbo 315200, China
Surface acoustic wave (SAW) resonators based on lithium tantalate (LT, LiTaO3) wafers are crucial elements of mobile communication filters. The use of intrinsic LT wafers typically brings about low fabrication accuracy of SAW resonators due to strong UV reflection in the lithography process. This hinders their resonance frequency control seriously in industrial manufacture. LT doping and chemical reduction could be applied to decrease the UV reflection of LT wafers for high lithographic precision. However, conventional methods fail to provide a fast and nondestructive approach to identify the UV performance of standard single-side polished LT wafers for high-precision frequency control. Here, we propose a convenient on-line sensing scheme based on the colorimetry of reduced Fe-doped LT wafers and build up an automatic testing system for industrial applications. The levels of Fe doping and chemical reduction are evaluated by the lightness and color difference of LT-based wafers. The correlation between the wafer visible colorimetry and UV reflection is established to refine the lithography process and specifically manipulate the frequency performance of SAW resonators. Our study provides a powerful tool for the fabrication control of SAW resonators and will inspire more applications on sophisticated devices of mobile communication.
Photonics Research
2024, 12(2): 341
Jindong Wang 1,2,3†Jingsheng Huang 1†Qihua Liu 2†Wei Du 1[ ... ]Tao Zhu 1,*
Author Affiliations
Abstract
1 Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
2 State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
3 e-mail: jdwang@cqu.edu.cn
The optical frequency comb serves as a powerful tool for distance measurement by integrating numerous stable optical modes into interferometric measurements, enabling unprecedented absolute measurement precision. Nonetheless, due to the periodicity of its pulse train, the comb suffers from measurement dead zones and ambiguities, thereby impeding its practical applications. Here, we present a linear group delay spectral interferometer for achieving precise full-range distance measurements. By employing a carefully designed linear group delay (LGD) device for phase modulation of the comb modes, interference can occur and be easily measured at any position. Our approach effectively eliminates the dead zones and ambiguities in comb-based ranging, without the need for cumbersome auxiliary scanning reference devices or reliance on complex high-repetition-rate combs or high-resolution spectrometers. We conducted length metrology experiments using a mode-locked comb referenced to a rubidium clock, achieving a large nonambiguity range up to 0.3 m, covering the entire measurement period. The maximum deviation compared to a laser interferometer was less than 1.5 μm, and the minimum Allan deviation during long-term measurements reached 5.47 nm at a 500 s averaging time. The approach ensures high accuracy while maintaining a simple structure, without relying on complex external devices, thereby propelling the practical implementation of comb-based length metrology.
Photonics Research
2024, 12(2): 313
Author Affiliations
Abstract
1 THz Technology Innovation Research Institute, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
3 e-mail: ymzhu@usst.edu.cn
The terahertz (THz) wave is at the intersection between photonics and electronics in the electromagnetic spectrum. Since the vibration mode of many biomedical molecules and the weak interaction mode inside the molecules fall in the THz regime, utilizing THz radiation as a signal source to operate substance information sensing has its unique advantages. Recently, the metamaterial sensor (metasensor) has greatly enhanced the interaction between signal and substances and spectral selectivity on the subwavelength scale. However, most past review articles have demonstrated the THz metasensor in terms of their structures, applications, or materials. Until recently, with the rapid development of metasensing technologies, the molecular information has paid much more attention to the platform of THz metasensors. In this review, we comprehensively introduce the THz metasensor for detecting not only the featureless refractive index but also the vibrational/chiral molecular information of analytes. The objectives of this review are to improve metasensing specificity either by chemical material-assisted analyte capture or by physical molecular information. Later, to boost THz absorption features in a certain frequency, the resonant responses of metasensors can be tuned to the molecular vibrational modes of target molecules, while frequency multiplexing techniques are reviewed to enhance broadband THz spectroscopic fingerprints. The chiral metasensors are also summarized to specific identification chiral molecules. Finally, the potential prospects of next generation THz metasensors are discussed. Compared to featureless refractive index metasensing, the specific metasensor platforms accelerated by material modification and molecular information will lead to greater impact in the advancement of trace detection of conformational dynamics of biomolecules in practical applications.
Photonics Research
2024, 12(2): 194
Author Affiliations
Abstract
1 Key Laboratory of Opto-electronic Information Acquisition and Manipulation, Ministry of Education, Anhui University, Hefei 230601, China
2 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
An imperfect propagation environment or optical system would introduce wavefront aberrations to vortex beams. The phase aberrations and orbital angular momentum in a vortex beam are proved to be mutually restrictive in parameter measurement. Aberrations make traditional topological charge (TC) probing methods ineffective while the phase singularity makes phase retrieval difficult due to the aliasing between the wrapped phase jump and the vortex phase jump. An interactive probing method is proposed to make measurements of the aberrated phase and orbital angular momentum in a vortex beam assist rather than hinder each other. The phase unwrapping is liberated from the phase singularity by an annular shearing interference technique while the TC value is determined by a Moiré technique immune to aberrations. Simulation and experimental results proving the method effective are presented. It is of great significance to judge the characteristics of vortex beams passing through non-ideal environments and optical systems.
Photonics Research
2024, 12(1): 172
Author Affiliations
Abstract
Nexus for Quantum Technologies, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
A Brillouin dynamic grating (BDG) can be used for distributed birefringence measurement in optical fibers, offering high sensitivity and spatial resolution for sensing applications. However, it is quite a challenge to simultaneously achieve dynamic measurements with both high accuracy and high spatial resolution. In this work, we propose a sensing mechanism to achieve distributed phase-matching measurement using a chirped pulse as a probe signal. In BDG reflection, the peak reflection corresponds to the highest four-wave mixing (FWM) conversion efficiency, and it requires the Brillouin frequency in the fast and slow axes to be equal, which is called the phase-matching condition. This condition changes at different fiber positions, which requires a range of frequency injection for the probe wave. The proposed method uses a chirped pulse as a probe wave to cover this frequency range associated with distributed birefringence inhomogeneity. This allows us to detect distributed phase matching for birefringence changes that are introduced by temperature and strain variations. Thanks to the single shot and direct time delay measurement capability, the acquisition rate in our system is only limited by the fiber length. Notably, unlike conventional BDG spectrum recovery-based systems, the spatial resolution here is determined by both the frequency chirping rate of the probe pulse and the birefringence profile of the fiber. In the experiments, an acquisition rate of 1 kHz (up to fiber length limits) and a spatial resolution of 10 cm using a 20 ns probe pulse width are achieved. The minimum detectable temperature and strain variation are 5.6 mK and 0.37 με along a 2 km long polarization-maintaining fiber (PMF).
Photonics Research
2024, 12(1): 141
Author Affiliations
Abstract
1 Chair of Materials Science and Additive Manufacturing, School of Mechanical Engineering and Safety Engineering, University of Wuppertal, 42119 Wuppertal, Germany
2 Chair of Aerodynamics and Fluid Mechanics, School of Engineering and Design, Technical University of Munich, 85748 Garching bei München, Germany
3 Munich Institute of Integrated Materials, Energy, and Process Engineering (MEP), Technical University of Munich, 85748 Garching bei München, Germany
4 Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
To further advance nanomaterial applications and reduce waste production during synthesis, greener and sustainable production methods are necessary. Pulsed laser ablation in liquid (PLAL) is a green technique that enables the synthesis of nanoparticles. This study uses synchronous-double-pulse PLAL to understand bubble interaction effects on the nanoparticle size. By adjusting the lateral separation of the pulses relative to the maximum bubble size, an inter-pulse separation is identified where the nanoparticle size is fourfold. The cavitation bubble pair interaction is recorded using a unique coaxial diffuse shadowgraphy system. This system allows us to record the bubble pair interaction from the top and side, enabling the identification of the bubble’s morphology, lifetime, volumetric, and displacement velocity. It is found that the collision and collapse of the bubbles generated at a certain inter-pulse separation results in a larger nanoparticle size. These results mark a significant advancement by controlling the abundance of larger nanoparticles in PLAL, where previous efforts were primarily focused on reducing the average nanoparticle size. The experimentally observed trends are confirmed by numerical simulations with high spatial and temporal resolution. This study serves as a starting point to bridge the gap between upscaled multi-bubble practices and fundamental knowledge concerning the determinants that define the final nanoparticle size.
Photonics Research
2023, 11(12): 2054
Author Affiliations
Abstract
1 Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
2 Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
3 Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education, and Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
4 Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
5 e-mail: zbren@nwpu.edu.cn
6 e-mail: jiangleidi@gdut.edu.cn
7 e-mail: jlzhao@nwpu.edu.cn
The time-delay problem, which is introduced by the response time of hardware for correction, is a critical and non-ignorable problem of adaptive optics (AO) systems. It will result in significant wavefront correction errors while turbulence changes severely or system responses slowly. Predictive AO is proposed to alleviate the time-delay problem for more accurate and stable corrections in the real time-varying atmosphere. However, the existing prediction approaches either lack the ability to extract non-linear temporal features, or overlook the authenticity of spatial features during prediction, leading to poor robustness in generalization. Here, we propose a mixed graph neural network (MGNN) for spatiotemporal wavefront prediction. The MGNN introduces the Zernike polynomial and takes its inherent covariance matrix as physical constraints. It takes advantage of conventional convolutional layers and graph convolutional layers for temporal feature catch and spatial feature analysis, respectively. In particular, the graph constraints from the covariance matrix and the weight learning of the transformation matrix promote the establishment of a realistic internal spatial pattern from limited data. Furthermore, its prediction accuracy and robustness to varying unknown turbulences, including the generalization from simulation to experiment, are all discussed and verified. In experimental verification, the MGNN trained with simulated data can achieve an approximate effect of that trained with real turbulence. By comparing it with two conventional methods, the demonstrated performance of the proposed method is superior to the conventional AO in terms of root mean square error (RMS). With the prediction of the MGNN, the mean and standard deviation of RMS in the conventional AO are reduced by 54.2% and 58.6% at most, respectively. The stable prediction performance makes it suitable for wavefront predictive correction in astronomical observation, laser communication, and microscopic imaging.
Photonics Research
2023, 11(11): 1802
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
2 Department of Electrical Engineering and Photonics Research Institute, The Hong Kong Polytechnic University, Hong Kong 518060, China
3 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
4 Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
Nanophotonic waveguides hold great promise to achieve chip-scale gas sensors. However, their performance is limited by a short light path and small light–analyte overlap. To address this challenge, silicon-based, slow-light-enhanced gas-sensing techniques offer a promising approach. In this study, we experimentally investigated the slow light characteristics and gas-sensing performance of 1D and 2D photonic crystal waveguides (PCWs) in the near-IR (NIR) region. The proposed 2D PCW exhibited a high group index of up to 114, albeit with a high propagation loss. The limit of detection (LoD) for acetylene (C2H2) was 277 parts per million (ppm) for a 1 mm waveguide length and an averaging time of 0.4 s. The 1D PCW shows greater application potential compared to the 2D PCW waveguide, with an interaction factor reaching up to 288%, a comparably low propagation loss of 10 dB/cm, and an LoD of 706 ppm at 0.4 s. The measured group indices of the 2D and 1D waveguides are 104 and 16, respectively, which agree well with the simulation results.
Photonics Research
2023, 11(10): 1647
Liuhao Zhu 1Yuping Tai 1,2Hehe Li 1Huajie Hu 1[ ... ]Yijie Shen 5,6,9,*
Author Affiliations
Abstract
1 School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
3 Shandong Provincial Engineering and Technical Center of Light Manipulations and Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
4 Joint Research Center of Light Manipulation Science and Photonic Integrated Chip of East China Normal University and Shandong Normal University, East China Normal University, Shanghai 200241, China
5 Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
6 Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences and The Photonics Institute, Nanyang Technological University, Singapore 637378, Singapore
7 e-mail: xzli@haust.edu.cn
8 e-mail: yangjian_cai@163.com
9 e-mail: yijie.shen@ntu.edu.sg
Structured light with more extended degrees of freedom (DoFs) and in higher dimensions is increasingly gaining traction and leading to breakthroughs such as super-resolution imaging, larger-capacity communication, and ultraprecise optical trapping or tweezers. More DoFs for manipulating an object can access more maneuvers and radically increase maneuvering precision, which is of significance in biology and related microscopic detection. However, manipulating particles beyond three-dimensional (3D) spatial manipulation by using current all-optical tweezers technology remains difficult. To overcome this limitation, we theoretically and experimentally present six-dimensional (6D) structured optical tweezers based on tailoring structured light emulating rigid-body mechanics. Our method facilitates the evaluation of the methodology of rigid-body mechanics to synthesize six independent DoFs in a structured optical trapping system, akin to six-axis rigid-body manipulation, including surge, sway, heave, roll, pitch, and yaw. In contrast to previous 3D optical tweezers, our 6D structured optical tweezers significantly improved the flexibility of the path design of complex trajectories, thereby laying the foundation for next-generation functional optical manipulation, assembly, and micromechanics.
Photonics Research
2023, 11(9): 1524
Zongliang Xie 1,2,3†Kaiyuan Yang 1,2,3†Yang Liu 1,2†Tianrong Xu 1,2[ ... ]Hu Yang 1,2,3,5
Author Affiliations
Abstract
1 Key Laboratory of Optical Engineering, Chinese Academy of Sciences, Chengdu 610209, China
2 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
4 e-mail: mahaotong@163.com
5 e-mail: yanghu@ioe.ac.cn
Flat optics has been considered promising for constructions of spaceborne imaging systems with apertures in excess of 10 m. Despite recent advances, there are long-existing challenges to perform in-phase stitching of multiple flat optical elements. Phasing the segmented planar instrument has remained at the proof of concept. Here, we achieve autonomous system-level cophasing of a 1.5-m stitching flat device, bridging the gap between the concept and engineering implementation. To do so, we propose a flat element stitching scheme, by manipulating the point spread function, which enables our demonstration of automatically bringing seven flat segments’ tip/tilt and piston errors within the tolerance. With phasing done, the 1.5-m system has become the largest phased planar instrument ever built in the world, to our knowledge. The first demonstration of phasing the large practical flat imaging system marks a significant step towards fielding a 10-m class one in space, also paving the way for ultrathin flat imaging in various remote applications.
Photonics Research
2023, 11(7): 1339

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!