光学学报, 2014, 34 (12): 1214001, 网络出版: 2014-11-14   

基于扭转模腔的全固态单纵模拉曼黄光激光器设计

Design of Single-Longitudinal-Mode Operation in a Solid State Yellow Laser with Twisted-Mode-Cavity
作者单位
清华大学精密仪器系, 北京 100084
摘要
输出波长在560~590 nm的全固态拉曼黄光激光器是近几年兴起的激光器之一。目前,此类激光器内部多模振荡引起的黄光输出谱线单色性较差的问题还没有得到解决。针对这一情况,提出将扭转模腔与拉曼复合腔相结合的新型解决方案,从根本上消除增益介质中空间烧孔效应引起的基频光多模振荡,实现单纵模黄光输出。拉曼复合腔由L型基频光谐振腔与直线型拉曼谐振腔耦合而成,既保证各个非线性变换过程可充分利用腔内的高功率密度,又可相对独立地对不同波长的光路进行优化调节,从而使整个系统实现最佳输出。该设计有助于在全固态拉曼激光器中实现毫瓦量级的单纵模黄光输出,为基于黄激光的生物医疗、钠导星、空间目标识别等系统提供理想的固体黄光光源。
Abstract
All-solid-state yellow Raman lasers working in the spectra range of 560~590 nm have promising development in recent years. However, it is still facing the problem of yellow spectrum impurity resulting from the multimode operation within the laser resonator. To solve this problem, a novel design of single-longitudinal-mode yellow Raman laser based on the twisted-mode-cavity combined with Raman couple cavity is proposed. It can suppress the multimode oscillations at the fundamental wavelength caused by the spacial hole burning effect in the laser gain medium, and then realize thesingle-longitudinal-mode operation at the yellow wavelength. The Raman couple cavity consists of a L-shape fundamental resonator and a linear Raman resonator, which can benefit from high intensity of intracavity fields to reduce the laser threshold. It also has advantage of flexible adjustment to optimize different resonators separately for the best laser performance. This design is of practical significance to enable single-lungitudinal-mode yellow laser source with milliwatt output power, which paves the way for applying yellow lasers in biomedicine, laser-guide-star and space target recognition.
参考文献

[1] H M Pask. The design and operation of solid-state Raman lasers [J]. Progress in Quantum Electronics, 2003, 27(1): 3-56.

[2] W Telford, M Murga, T Hawley, et al.. DPSS yellow-green 561-nm lasers for improved fluorochrome detection by flow cytometry [J]. Cytometry Part A, 2005, 68A(1): 36-44.

[3] L Tomi, H Anti, K Ville-Markus, et al.. 589 nm multi-watt narrow linewidth optically pumped semiconductor laser for laser guide stars [C]. in Advanced Solid-State Photonics. 2010: Optical Society of America.2010. ATuA10.

[4] A D Greentree, S Prawer. Yellow lasers: A little diamond goes a long way [J]. Nat Photon, 2010, 4(4): 202-203.

[5] C E Max, S S Olivier, H W Friedman, et al.. Image improvement from a sodium-layer laser guide star adaptive optics system [J]. Science, 1997, 277(5332): 1649-1652.

[6] Y Tan, X H Fu, P Zhai, et al.. An efficient cw laser at 560 nm by intracavity sum-frequency mixing in a self-Raman NdLuVO4 laser [J]. Laser Physics, 2013, 23(4): 045806.

[7] J Janousek. Efficient all solid-state continuous-wave yellow-orange light source [J]. Opt Express, 2005, 13: 1188-1192.

[8] Y F Lü, X H Zhang, X H Fu, et al.. Diode-pumped NdLuVO4 and NdYAG crystals yellow laser at 594 nm based on intracavity sum-frequency generation [J]. Laser Physics Letters, 2010, 7(9): 634.

[9] Y L Chen, W W Chen, C E Du, et al.. Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings [J]. Opt Express, 2009, 17(25): 22578-22585.

[10] C Xiuyan, L Xiu, Z Haolei, et al.. 589-nm yellow laser generation by intra-cavity sum-frequency mixing in a T-shaped NdYAG laser cavity [J]. Chin Opt Lett, 2009, 7(9): 815-818.

[11] J Lin, H Pask. Nd:GdVO4 self-Raman laser using double-end polarised pumping at 880 nm for high power infrared and visible output [J]. Applied Physics B: Lasers and Optics, 2012, 108(1): 17-24.

[12] J Lin, H M Pask, D J Spence, et al.. Continuous-wave VECSEL Raman laser with tunable lime-yellow-orange output [J]. Opt Express, 2012, 20(5): 5219-5224.

[13] X Li, A J Lee, H M Pask, et al.. Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd:YVO4 self-Raman laser [J]. Opt Lett, 2011, 36(8): 1428-1430.

[14] Z Cong, X Zhang, Q Wang, et al.. Theoretical and experimental study on the NdYAG/BaWO4/KTP yellow laser generating 8.3 W output power [J]. Opt Express, 2010, 18(12): 12111-12118.

[15] A J Lee, D J Spence, J A Piper, et al.. A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible [J]. Opt Express, 2010, 18(19): 20013-20018.

[16] 孙桂侠, 刘涛, 钱金宁, 等. 可调谐全固态Nd:YVO4/LBO倍频连续671 nm环形激光器 [J]. 中国激光, 2013, 40(6): 97-101.

    Sun Guixia, Liu Tao, Qian Jinning, et al.. Tunable all-solid-state continuous wave intra-cavity frequency-doubled Nd:YVO4/LBO 671 nm ring laser [J]. Chinese J Lasers, 2013, 40(6): 97-101.

[17] 焦月春, 马亚云, 李渊骥, 等. 全固态单纵模脉冲Nd:YVO4环形激光器 [J]. 量子光学学报, 2014, 20(1): 81-84.

    Jiao Yuechun, Ma Yayun, Li Yuanji, et al.. All-solid-state single-longitudinal-mode pulse Nd:YVO4 ring laser [J]. Acta Sinica Quantum Optica, 2014, 20(1): 81-84.

[18] V Evtuhov, A E Siegman. A "twisted-mode" technique for obtaining axially uniform energy density in a laser cavity [J]. Applied Optics, 1965, 4(1): 142-143.

[19] P Polynkin, A Polynkin, M Mansuripur, et al.. Single-frequency laser oscillator with watts-level output power at 1.5 μm by use of a twisted-mode technique [J]. Opt Lett, 2005, 30(20): 2745-2747.

[20] H Pan, S Xu, H Zeng. Passively Q-switched Single-longitudinal-mode c-cut Nd:GdVO4 laser with a twisted-mode cavity [J]. Opt Express, 2005, 13(7): 2755-2760.

[21] E Wu, H Pan, S Zhang, et al.. High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO4 crystal [J]. Applied Physics B, 2005, 80(4-5): 459-462.

[22] C Wei-Wen, C Yen-Liang, C Wei-Kuan, et al.. Narrow-line, continuous-wave orange 593.5-nm generation in diode-pumped Nd:YVO4 laser using volume Bragg gratings [C]. in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. 2009: Optical Society of America.

[23] T T Basiev, A A Sobol, P G Zverev, et al.. Comparative spontaneous Raman spectroscopy of crystals for Raman lasers [J]. Appl Opt, 1999, 38(3): 594-598.

[24] A A Kaminskii, H J Eichler, K Ueda, et al.. Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and Undoped Monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals [J]. Appl Opt, 1999, 38(21): 4533-4547.

[25] A A Kaminskii, K-i Ueda, H J Eichler, et al.. Tetragonal vanadates YVO4 and GdVO4-new efficient χ(3)-materials for Raman lasers [J]. Opt Commun, 2001, 194(1-3): 201-206.

[26] R C Eckardt, H Masuda, Y X Fan, et al.. Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgOLiNbO3, and KTP measured by phase-matched second-harmonic generation [J]. IEEE Journal of Quantum Electronics, 1990, 26(5): 922-933.

[27] D A Roberts. Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions [J]. IEEE J Quantum Electron, 1992, 28(10): 2057-2074.

李小丽, 谈宜东, 杨昌喜, 张书练. 基于扭转模腔的全固态单纵模拉曼黄光激光器设计[J]. 光学学报, 2014, 34(12): 1214001. Li Xiaoli, Tan Yidong, Yang Changxi, Zhang Shulian. Design of Single-Longitudinal-Mode Operation in a Solid State Yellow Laser with Twisted-Mode-Cavity[J]. Acta Optica Sinica, 2014, 34(12): 1214001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!