光子学报, 2019, 48 (1): 0123001, 网络出版: 2019-01-27  

W/VO2周期性纳米盘阵列可调中红外宽频吸收器

Tunable Mid-infrared Broadband Absorber Based on W/VO2 Periodic Nanodisk Array
作者单位
1 上海理工大学 光电信息与计算机工程学院, 上海 200093
2 上海市现代光学系统重点实验室, 上海 200093
摘要
为了实现对3~5 μm中红外光的完美吸收, 仿真设计了一种基于W/VO2周期性纳米盘阵列的可调中红外宽频吸收器, 利用时域有限差分法模拟计算了结构参数对吸收器性能的影响.在最佳结构参数条件下, 吸收器表现出偏振无关和广角吸收的特性, 在3.1~3.6 μm范围内吸收率达99%以上, 峰值吸收率为99.99%.低温时入射光的磁场被束缚在各单元VO2介质层的中心并得到完美吸收; 高温时VO2发生相变表现为金属相, 抑制吸收, 高低温的吸收率差值可达78.8%.该吸收器有效弥补了传统吸收器吸收频带窄、吸收率不可调的缺陷, 对中红外光电器件的应用有参考价值.
Abstract
In order to realize the perfect absorption of 3~5 μm mid-infrared wave, a tunable mid-infrared broadband absorber based on W/VO2 periodic nanodisk array is designed in this paper. The effects of structural parameters on the absorption performance are calculated by the Finite-Difference Time-Domain. With the optimal structural parameters, the absorber is polarization-independent and exhibits wide-angle absorption. The absorptivity is over 99% in the range of 3.1~3.6 μm, and the maximum absorptivity is 99.99%. At low temperature, the absorber presents a perfect absorption because the magnetic field is trapped in the center of each cell's VO2 dielectric layer. While at high temperature, the VO2 film is converted to metallic phase in which the absorber displays a strong reflection. The absorption difference between high and low temperature is up to 78.8%. The absorber effectively compensates for the shortcomings of the traditional absorber with a narrow absorption band and inability to regulate the absorptivity. The result of this study is of valuable reference to the application of mid-infrared optoelectronic devices.
参考文献

[1] 刘宇, 吕军, 宋坤,等. 光波段柔性基超材料制备及光学性质[J]. 光子学报, 2010, 39(7): 1176-1180.

    LIU Yu, LU Jun, SONG Kun, et al. Preparation and optical properties of visible metamaterials on flexible film[J]. Acta Photonica Sinica, 2010, 39(7): 1176-1180.

[2] PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J].Science, 2006, 312(5781): 1780-1782.

[3] LEONHARDT U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777-1780.

[4] ERGIN T, STENGER N, BRENNER P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337-339.

[5] 赵亚娟, 周必成, 张晗, 等. 方环结构的宽频可调超材料滤波器[J]. 光子学报, 2018, 47(7): 0723003.

    ZHAO Ya-juan, ZHOU Bi-cheng, ZHANG Han, et al. Broadband tunable filter based on square loop metamaterial[J]. Acta Photonica Sinica, 2018, 47(7): 0723003.

[6] 张浩, 童元伟. 基于一维金属开口谐振环的可调带通滤波器[J]. 光子学报, 2018, 47(7): 0723002.

    ZHANG Hao, TONG Yuan-wei. Tunable pass-band filter based on one dimensional split ring resonant structure[J]. Acta Photonica Sinica, 2018, 47(7): 0723002.

[7] ZHANG X, LIU Z. Superlenses to overcome the diffraction limit[J]. Nature Materials, 2008, 7(6): 435-441.

[8] PAN L, PARK Y, XIONG Y, et al. Maskless plasmonic lithography at 22 nm resolution[J]. Scientific Reports, 2011, 1(11): 116-120.

[9] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letter, 2008, 100(20): 207402.

[10] 魏东, 张贵忠, 丁欣, 等. 金属-电介质微盘阵列红外吸收器的光学特性分析[J]. 光子学报, 2017, 46(8): 0823005.

    WEI Dong, ZHANG Gui-zhong, DING Xin, et al. Analysis of optical properties of metal-dielectric microplate array infrared absorber[J]. Acta Photonica Sinica, 2017, 46(8): 0823005.

[11] FENG R, DING W, LIU L, et al. Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array[J]. Optics Express, 2014, 22(S2): A335.

[12] WEN Q Y, ZHANG H W, XIE Y S, et al. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization[J]. Applied Physics Letters, 2009, 95(24): 207402.

[13] CHAO G U, SHAOBO Q U, PEI Z B, et al. Planar metamaterial absorber based on lumped elements[J]. Chinese Physics Letters, 2010, 27(11): 117802-117804.

[14] ZHU J, MA Z, SUN W, et al. Ultra-broadband terahertz metamaterial absorber[J]. Applied Physics Letters, 2014, 105(2): 4773-79.

[15] WANG H, WANG L. Perfect selective metamaterial solar absorbers[J]. Optics Express, 2013, 21(22): A1078-A1093.

[16] POPURI S R, ARTEMENKO A, DECOURT R, et al. Presence of peierls pairing and absence of insulator-to-metal transition in VO2 (A): a structure-property relationship study[J]. Physical Chemistry Chemical Physics, 2017, 19(9): 6601-6609.

[17] 张建奇. 红外物理[M]. 西安电子科技大学出版社, 2013.

    ZHANG Jian-qi. Infrared physics[M]. Xi’an: Xi′an Electronic Science and Technogy University Press, 2013.

[18] KOCER H, BUTUN S, BANAR B, et al. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures[J]. Applied Physics Letters, 2015, 106(16): 7181-7188.

[19] 伍征义, 李毅, 陈培祖,等. 基于Au/VO2纳米结构的可调控红外吸收器设计[J]. 红外与毫米波学报, 2016, 35(6): 694-700.

    WU Zheng-yi, LI Yi, CHEN Pei-zu, et al. Design of tunable infrared absorber based on Au/VO2 nanostructures[J]. Journal of Infrared & Millimeter Waves, 2016, 35(6): 694-700.

[20] YANG J, QU S, MA H, et al. Broadband infrared metamaterial absorber based on anodic aluminum oxide template[J]. Optics Laser Technology, 2018, 101.

[21] CANTERO S,HUANG Y, TSENG S H. FDTD simulation of an optical absorber based on CPML absorbing boundary condition[C]. SPIE BiOS, International Society for Optics and Photonics, 2014: 138-157.

[22] AYDIN K, FERRY V E, BRIGGS R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nature Communications, 2011, 2(1): 517.

[23] SCHMID F, KHATTAK C P, FELT D M, et al. Current status of very large sapphire crystal growth for optical applications[C]. SPIE, 1999, 3705: 70-76.

[24] 王海方, 李毅, 俞晓静,等. 二氧化钒薄膜的变温红外光学特性研究[J]. 光学学报, 2010, 30(5): 1522-1526.

    WANG Hai-fang, LI Yi, YU Xiao-jing, et al. Study on temperature dependence of infrared optical properties of vanadium dioxide thin film[J]. Acta Optica Sinica, 2010, 30(5): 1522-1526.

[25] LIU M Z, YI L I, ZHANG J, et al. Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films[J]. Journal of Physics D Applied Physics, 2017,50(38): 385104.

李政鹏, 李毅, 黄雅琴, 裴江恒, 田蓉, 刘进, 周建忠, 方宝英, 王晓华, 肖寒. W/VO2周期性纳米盘阵列可调中红外宽频吸收器[J]. 光子学报, 2019, 48(1): 0123001. LI Zheng-peng, LI Yi, HUANG Ya-qin, PEI Jiang-heng, TIAN Rong, LIU Jin, ZHOU Jian-zhong, FANG Bao-ying, WANG Xiao-hua, XIAO Han. Tunable Mid-infrared Broadband Absorber Based on W/VO2 Periodic Nanodisk Array[J]. ACTA PHOTONICA SINICA, 2019, 48(1): 0123001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!