激光与光电子学进展, 2014, 51 (1): 010003, 网络出版: 2014-01-03   

掺稀土光纤的光子暗化研究进展 下载: 928次

Advance in Study on Photodarkening of Rare-Earth Doped Fibers
作者单位
国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
摘要
掺稀土光纤是光纤激光器的基础,而掺杂光纤的光子暗化是影响激光输出功率稳定性的重要因素。综述了光子暗化的产生机理、光子暗化对光纤激光器的影响及其抑制方法,旨在为相关研究提供参考。
Abstract
Rare-earth doped fibers are the foundation of fiber lasers while the photodarkening of doped fibers is a significant factor which is harmful to the stability of laser output power. In this paper, we review the mechanics of photodarkening, and the influence of photodarkening on the fiber lasers, as well as all kinds of methods which can mitigate the photodarkening effects in the doped fiber, with the aim of providing useful information for the related research.
参考文献

[1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. J Opt Soc Am B, 2010, 27(11): B63-B92.

[2] 朱宗玖, 许立新, 毛庆和, 等. 高掺杂浓度掺镱光纤的光子暗化效应[J]. 光子学报, 2007, 36(1): 26-29.

    Zhu Zongjiu, Xu Lixin, Mao Qinghe, et al.. Photodarkening in ytterbium-doped fibers with high doping concentration[J]. Anta Photonica Sinica, 2007, 36(1): 26-29.

[3] 杨 玲, 陈根详, 梁 毅, 等. 掺锗光纤的紫外光敏特性[J]. 光通信技术, 1996, 20(3): 232-236.

    Yang Ling, Chen Genxiang, Liang Yi, et al.. Ultraviolet photosensitivity in Ge-doped fiber[J]. Optical Communication Technology, 1996, 20(3): 232-236.

[4] 何 伟, 李剑芝, 梅家纯. 掺锗石英光纤光致折射率变化的实验研究[J]. 无机材料学报, 2005, 20(1): 201-214.

    He Wei, Li Jianzhi, Mei Jiachun. Experimental study on photolytic index changes in germanosilicate fiber[J]. J Inorganic Materials, 2005, 20(1): 201-214.

[5] 刘方新, 张辰华, 李宗民, 等. 光纤伽马射线辐照感生损耗的研究[J]. 中国科学技术大学学报, 1994, 24(3): 390-393.

    Liu Fangxin, Zhang Chenhua, Li Zongmin, et al.. Research on r-ray radiolytic loss[J]. J University of Science and Technology of China, 1994, 24(3): 390-393.

[6] 韩艳玲, 肖 文, 伊小素, 等. 辐照光纤的主动恢复效应[J]. 红外与激光工程, 2008, 37(1): 128-131.

    Han Yanling, Xiao Wen, Yi Xiaosu, et al.. Active recovery effect of irradiation optical fiber[J]. Infrared and Laser Engineering, 2008, 37(1): 128-131.

[7] 盛于邦, 邢瑞先, 栾怀训, 等. 伽马辐照对掺镱硅酸盐玻璃光学性能的影响[J]. 无机材料学报, 2012, 27(8): 860-864.

    Sheng Yubang, Xing Ruixian, Luan Huaixun, et al.. Gamma radiation effects on the optical properties of Yb-doped silicate glasses[J]. J Inorganic Materials, 2012, 27(8): 860-864.

[8] 吴武明, 肖 虎, 许将明, 等. 光纤激光同带级联抽运的研究进展[J]. 激光与光电子学进展, 2011, 48(9): 091402.

    Wu Wuming, Xiao Hu, Xu Jiangming, et al.. Research progress of tandem-pumped fiber laser[J]. Laser & Optoelectronics Progress, 2011, 48(9): 091402.

[9] J Canning, Adrian L G Carter, M G Sceats. Correlation between photodarkening and index change during 193 nm irradiation of germanosilicate and phosphosilicate fibers[J]. J Lightwave Technol, 1997, 15(8): 1348-1356.

[10] Nathaniel Groothoff, John Canning, Mattias slund, et al.. 193 nm photodarkening of ytterbium doped optical fibre[C]. BGPP, 2007. BTuC2.

[11] Cheng Y, Oton C J, Boyland A J, et al.. Photodarkening of 488 nm-pumped Sm3+-doped germanosilicate fiber laser[C]. CLEO, 2009.

[12] Lauzon J, Sceats M G, Krug P A, et al.. UV-induced transient photodarkening and photoluminescence in Ge-doped optical fibers[C]. OFC, 1994.

[13] I Manek-Hnninger, J Boullet, T Cardinal, et al.. Photodarkening and photobleacking of an ytterbium-doped silica double-clad LMA fiber[J]. Opt Epxress, 2007, 15(4): 1606-1611.

[14] Brian P Fox, Kelly Simmons-Potter, William J Thomes Jr, et al.. Gamma-radiation-induced photodarkening in unpumped optical fibers doped with rare-earth constituents[J]. IEEE Trans Nuclear Science, 2010, 57(3): 1618-1625.

[15] T Arai, K Ichii, S Tanigawa, et al.. Defect analysis of photodarkened and gamma-ray irradiated ytterbium-doped silica glasses[C]. OFC, 2009. OWT2.

[16] Martin Leich, Sylvia Jetschke, Sonja Unger A, et al.. Temperature influence on the photodarkening kinetics in Yb-doped silica fibers[J]. J Opt Soc Am B, 2011, 28(1): 65-68.

[17] Sderlund M J, Ponsoda J J M I, Koplow J P, et al.. Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling[J]. Opt Express, 2009, 17(12): 9940-9946.

[18] Mikko J Sderlund, Joan J Montiel I Ponsoda, Simo K T Tammela, et al.. Mode-induced transverse photodarkening loss variations in large-mode-area ytterbium doped silica fibers[J]. Opt Express, 2008, 16(14): 10633-10640.

[19] Leich M, Jetschke S, Unger S, et al.. Acceleration of photodarkening measurements in Yb-doped fibers by enhanced temperatures[C]. CLEO Europe, 2009.

[20] M M Broer, D M Krol, D J Digiovanni. Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber[J]. Opt Lett, 1993, 18(10): 799-801.

[21] Atkins G R, Ouellette F. Reversible photodarkening and bleaching in Tb3+-doped optical fibers[J]. Opt Lett, 1994, 19(13): 951-953.

[22] B P Fox, Z V Schneider, K Simmons-Potter, et al.. Spectrally resolved transmission loss in gamma irradiated Yb-doped optical fibers[J]. IEEE J Quantum Electron, 2008, 44(6): 581-586.

[23] B Tortech, A M Van Uffelen, J P Meunier, et al.. Gamma radiation induced loss in erbium doped optical fibers[J]. J Non-Cryst Solids, 2007, 353(5-7): 477-480.

[24] Glebov L B. Linear and nonlinear photoionization of silicate glasses[J]. Glass Sci Technol, 2002, 75(C2): 73-90.

[25] Williams G M, Wright B M, Mack W D, et al.. Projecting the performance of erbium-doped fiber devices in a space radiation environment[C]. SPIE, 1999. 3848: 271-280.

[26] Askins C G, Putnam M A. Photodarkening and photobleaching in fiber optic Bragg gratings[J]. J Lightwave Technol, 1997, 15(8): 1363-1370.

[27] J J Koponen, M J Sderlund, S K Tammela. Measuring photodarkening from single-mode ytterbium doped silica fibers[J]. Opt Express, 2006, 14(24): 11539-11544.

[28] Gebavi H, Taccheo S, Milanese D, et al.. Photodarkening measurements in Yb-doped silica fibers in correlation with cooperative luminescence[C]. SPIE, 2012, 8433: 843322.

[29] C Basu, S Yoo, A J Boyland, et al.. Influence of temperature on the post-irradiation temporal loss evolution in Yb-doped aluminosilicate fibers, photodarkened by 488 nm CW irradiation [J]. Opt Lett, 2007, 32(12): 1626-1628.

[30] Kitabayashi T, Ikeda M, Nakai M, et al.. Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminum doping[C]. OFC, 2006. OThC5.

[31] Sylvia Jetschke, Sonja Unger, Ulrich Rpke, et al.. Photodarkening in Yb doped fibers experimental evidence of equilibrium states depending on the pump power[J]. Opt Express, 2007, 15(22): 14838-14843.

[32] Joan J Montiel I Ponsoda, Mikko J Sderlund, Jeffrey P Koplow, et al.. Photodarkening-induced increase of fiber temperature[J]. Appl Opt, 2010, 49(22): 4139-4144.

[33] Inoue N, Shirakawa A, Ueda K. Photodarkening and photobleaching of Yb-doped fibers by laser diodes[C]. CLEO, 2010. CMGG5.

[34] Piccoli R, Mechin D, Robin T, et al.. Lifetime reduction due to photodarkening phenomenon in ytterbium-doped fibers and rate equation term[J]. Opt Lett, 2013, 38(21): 4370-4373.

[35] O Berné, M Caussanel, Gilard O. A model for the prediction of EDFA gain in a space radiation environment[J]. IEEE Photon Technol Lett, 2004, 16(10): 2227-2229.

[36] Fox B P, Simmons-Potter K, Simmons J H, et al.. Radiation damage effects in doped fiber materials[C]. SPIE, 2008, 6873: 68731F.

[37] D L Griscom, M E Gingerich, E J Friebele. Radiation induced defects in glasses: origin of power-lawdependence of concentration on dose[J]. Phys Rev Lett, 1993, 71(7): 1019-1022.

[38] Manek-Hnninger I, Boullet J, Cardinal T, et al.. Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber[J]. Opt Express, 2007, 15(4): 1606-1611.

[39] Xiong L, Sekiya E H, Saito K. Yb-doped silica preform precursor nanoparticles and the photodarkening in them[C]. ACP, 2009. ThBB4.

[40] R Peretti, A-M Jurdyc, B J Acquier, et al.. How do traces of thulium explain photodarkening in Yb doped fibers[J]. Opt Express, 2010, 18(19): 20455-20460.

[41] Jetschke S, Unger S, Schwuchow A, et al.. Evidence of Tm impact in low-photodarkening Yb-doped fibers[J]. Opt Express, 2013, 21(6): 7590-7598.

[42] Koponen J, Laurila M, Hotoleanu M. Demonstration of spatial distribution of photodarkening in Yb-doped[J]. Electron Lett, 2008, 44(16): 960-961.

[43] Hotoleanu M, Koponen J, Kokki T, et al.. Experimental verification of spatial distribution of photodarkening in large mode area ytterbium doped fibers[C]. CLEO, 2008. CFS3.

[44] Changgeng Ye, Joan J Montiel I Ponsoda, Ari Tervonen, et al.. Refractive index change in ytterbium-doped fibers induced by photodarkening and thermal bleaching[J]. Appl Opt, 2010, 49(30): 5799-5805.

[45] Taccheo S, Gebavi H, Monteville A, et al.. Concentration dependence and self-similarity of photodarkening losses induced in Yb-doped fibers by comparable excitation[J]. Opt Express, 2011, 19(20): 19340-19345.

[46] Zhang Xiaojie, Izutsu M, Kumagai H, et al.. Femtosecond optical Kerr studies of photodarkening effect on nonlinear optical properties of CdSxSe1-x doped glass[J]. Opt Commun, 1997, 142(4-6): 273-278.

[47] Paul M C, Yu Kir′Yanov, A V B. Yb2O3 doped yttrium-alumino-silicate nano-particles based LMA optical fibers for high-power fiber lasers[J]. J Lightwave Technol, 2012, 30(13): 2062-2068.

[48] Mitsunori Saito, Kaoru Nakajima, M Shishido. Polymer coating on infrared silver halide fiber for photodarkening protection[J]. J Lightwave Technol, 2002, 20(3): 441-447.

[49] Hrvoje Gebavi, Stefano Taccheo, Daniel Milanese, et al.. Temporal evolution and correlation between cooperative luminescence and photodarkening in ytterbium doped silica fibers[J]. Opt Express, 2011, 19(25): 25078-25085.

[50] Engholm M, Jelger P, Laurell F, et al.. Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping optical fibers[J]. Opt Lett, 2009, 34(8): 1285-1287.

[51] Sylvia Jetschke, Sonja Unger, Anka Schwuchow, et al.. Efficient Yb laser fibers with low photodarkening by optimization of the core composition[J]. Opt Express, 2008, 16(20): 15540-15545.

[52] M E Likhachev, S S Aleshkina, A V Shubin, et al.. Large-mode-area highly Yb-doped photodarkening-free Al2O3-P2O5-SiO2-based fiber[C]. CLEO Europe, 2011. CJ_P24.

[53] Yu C. Research on photodarkening in rare earth doped fibers[J]. J Rare Earths, 2012, 30(11): 1102-1105.

[54] S Yoo, M P Kalita, A J Boyland, et al.. Ytterbium doped nano-crystalline optical fiber for reduced photodarkening [C]. CLEO, 2010. JWA98.

[55] Sylvia Jetschke, Martin Leich, Sonja Unger, et al.. Influence of Tm- or Er-codoping on the photodarkening kinetics in Yb fibers[J]. Opt Express, 2011, 19(15): 14473-14478.

[56] Sderlund M J, Montiel Ponsoda J J, Honkanen S. Measurement of thermal binding energy of photodarkening-induced color centers in ytterbium-doped silica fibers[C]. CLEO Europe, 2009. CE3-3.

[57] Gebavi H, Taccheo S, Lablonde L, et al.. Mitigation of photodarkening phenomenon in fiber lasers by 633 nm light exposure[J]. Opt Lett, 2013, 38(2): 196-198.

[58] Jetschke S, Unger S, Rpke U, et al.. Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power[J]. Opt Express, 2007, 15(22): 14838-14843.

尤洁, 于海龙, 王小林, 周朴, 许晓军. 掺稀土光纤的光子暗化研究进展[J]. 激光与光电子学进展, 2014, 51(1): 010003. You Jie, Yu Hailong, Wang Xiaolin, Zhou Pu, Xu Xiaojun. Advance in Study on Photodarkening of Rare-Earth Doped Fibers[J]. Laser & Optoelectronics Progress, 2014, 51(1): 010003.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!