激光与光电子学进展, 2017, 54 (1): 010101, 网络出版: 2017-01-17   

基于激光雷达的京津冀地区大气边界层高度特征研究 下载: 1015次

Characteristics of Boundary Layer Height in Jing-Jin-Ji Area Based on Lidar
作者单位
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
摘要
大气边界层高度对大气颗粒物污染具有重要的影响。为研究京津冀区域的大气边界层高度变化特征, 利用该地区多个站点的激光雷达数据, 进行了统计研究, 并将激光雷达观测值与美国国家气象局国家环境预报中心全球资料同化系统模式模拟结果进行了对比。观测数据表明, 京津冀地区的大气边界层具有明显的日变化特征和季节变化特征: 白天的大气边界层高度高于夜晚, 且边界层高值出现在14:00左右; 夏、冬季的大气边界层高度高于春、冬季; 冬季大气边界层高度有降低趋势。此外, 2014年11月多个站点由激光雷达测得的边界层高度的统计分析表明, 京津冀地区大气边界层高度在300~900 m之间, 且东南方向较高。
Abstract
The atmospheric boundary layer height has important influence on particulate air pollution. A statistical investigation of atmospheric boundary layer height based on a large amount of Lidar data from multiple sites is used to analysis the characteristic in the Jing-Jin-Ji area. The atmospheric boundary layer height retrieved from the Lidar data is compared with the national weather service national centers for environmental prediction global data assimilation system forecast model result. Statistical results show that the atmospheric boundary layer of the Jing-Jin-Ji area has obvious characteristics of diurnal and seasonal variations, and the atmospheric boundary layer height is higher in the daytime than at night, and the peak value of the atmospheric boundary layer height occurs at 14:00. The atmospheric boundary layer height during the summer and autumn is higher than spring and winter, the atmospheric boundary layer height in winter also has a decreasing tendency. In addition, the statistical result of November 2014 based on all Lidar sites of atmospheric boundary layer height shows that the boundary layer height of the Jing-Jin-Ji area is between 300~900 m and higher in the southeast.
参考文献

[1] Stull R B. An introduction to boundary layer meteorology[M]. Norwell: Kluwer Acad, 1988.

[2] 祝存兄, 曹念文, 扬丰恺, 等. 南京地区微脉冲激光雷达气溶胶观测[J]. 激光与光电子学进展, 2015, 52(5): 050101.

    Zhu Cunxiong, Cao Nianwen, Yang Fengkai, et al. Micro pulse lidar observations of aerosols in Nanjing[J]. Laser & Optoelectronics Progress, 2015, 52(5): 050101.

[3] 伯广宇, 刘 东, 吴德成, 等. 双波长激光雷达探测典型雾霾气溶胶的光学和吸湿性质[J]. 中国激光, 2014, 41(1): 0113001.

    Bo Guangyu, Liu Dong, Wu Decheng, et al. Two-wavelength lidar for observation of aerosol optical and hygroscopic properties in fog and haze days[J]. Chinese J Lasers, 2014, 41(1): 0113001.

[4] 季承荔, 陶宗明, 胡顺星, 等. 三波长激光雷达探测卷云有效激光雷达比[J]. 中国激光, 2016, 43(8): 0810003.

    Ji Chengli, Tao Zongming, Hu Shunxing, et al. The effective lidar ratio of cirrus cloud measured by three-wavelength lidar[J]. Chinese J Lasers, 2016, 43(8): 0810003.

[5] 项 衍, 叶擎昊, 刘建国, 等. 基于图像边缘检测法反演大气边界层高度[J]. 中国激光, 2016, 43(7): 0704003.

    Xiang Yan, Ye Qinghao, Liu Jianguo, et al. Retrieve of planetary boundary layer height based on image edge detection[J]. Chinese J Lasers, 2016, 43(7): 0704003.

[6] Menut L, Flamant C, Pelon J, et al. Urban boundary layer height determination from lidar measurements over the Paris area[J]. Applied Optics, 1999, 38(6): 945-954.

[7] Chen Z, Zhang J, ZhangT, et al. Haze observation by simultaneous lidar and WPS in Beijing before and during APEC, 2014 [J]. Science China Chemistry, 2015, 58(9): 1385-1392.

[8] 范广强, 张天舒, 付毅宾, 等. 差分吸收激光雷达监测北京灰霾天臭氧时空发布特征[J]. 中国激光, 2014, 41(10): 1014003.

    Fan Guangqiang, Zhang Tianshu, Fu Yibin, et al. Temporal and spatial distribution characteristics of ozone based on differential absorption lidar in Beijing[J]. Chinese J Lasers, 2014, 41(10): 1014003.

[9] 王 琳, 谢晨波, 韩 永, 等. 测量大气边界层高度的激光雷达数据反演方法研究[J]. 大气与环境光学学报, 2012, 7(4): 241-247.

    Wang Lin, Xie Chenbo, Han Yong, et al. Comparison of retrieval methods of planetary boundary layer height from lidar data[J]. Journal of Atmospheric and Environmental Optics, 2012, 7(4): 241-247.

[10] 张婉春, 张 莹, 吕 阳, 等. 利用激光雷达探测灰霾天气大气边界层高度[J]. 遥感学报, 2013, 17(4): 981-992.

    Zhang Wanchun, Zhang Ying, Lü Yang, et al. Observation of atmospheric boundary layer height by ground-based lidar during haze days[J]. Journal of Remote Sensing, 2013, 17(4): 981-992.

[11] 王珊珊. 基于被动DOAS的上海城区NO2和气溶胶污染的反演研究[D]. 上海: 复旦大学, 2012: 70-76.

    Wang Shanshan. Study on the retrieval of NO2 and aerosol pollution in Shanghai urban area based on th passive DOAS technique[D]. Shanghai: Fudan University, 2012: 70-76.

[12] 杨 辉, 刘文清, 陆亦怀, 等. 北京城区大气边界层的激光雷达观测[J]. 光学技术, 2005, 31(2): 221-226.

    Yang Hui, Liu Wenqing, Lu Yihuai, et al. PBL observations by lidar at Peaking[J]. Optical Technique, 2005, 31(2): 221-226.

[13] 胡欢陵, 吴永华, 谢晨波, 等. 北京地区夏冬季颗粒物污染边界层的激光雷达观测[J]. 环境科学研究, 2004, 17(1): 59-66.

    Hu Huanling, Wu Yonghua, Xie Chenbo, et al. Aerosol pollutant boundary later measured by lidar at Beijing[J]. Research of Environmental Sciences, 2004, 17(1): 59-66.

吕立慧, 刘文清, 张天舒, 董云升, 陈臻懿, 范广强, 刘洋, 项衍. 基于激光雷达的京津冀地区大气边界层高度特征研究[J]. 激光与光电子学进展, 2017, 54(1): 010101. Lü Lihui, Liu Wenqing, Zhang Tianshu, Dong Yunsheng, Chen Zhenyi, Fan Guangqiang, Liu Yang, Xiang Yan. Characteristics of Boundary Layer Height in Jing-Jin-Ji Area Based on Lidar[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010101.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!